Eric R. Page
University of Guelph
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eric R. Page.
Weed Science | 2011
Emily Green-Tracewicz; Eric R. Page; Clarence J. Swanton
Recent studies have suggested that soybeans express shade avoidance in response to low red : far-red (R : FR) light reflected from neighboring plants and that this response may determine the onset and outcome of crop–weed competition. We tested the hypothesis that the low R : FR ratio would trigger characteristic shade avoidance responses in soybean and that the subsequent phenotype would experience reproductive costs under non–resource-limiting conditions. Soybeans were grown in a fertigation system in field trials conducted in 2007 and 2008 under two light quality treatments: (1) high R : FR ratio (i.e., weed-free) i.e., upward reflected light from a baked clay medium (Turface MVP®), or (2) low R : FR ratio (i.e., weedy) of upward reflected light, from commercial turfgrass. Results of this study indicated that a reduction in the R : FR ratio of light reflected from the surface of turfgrass increased soybean internode elongation, reduced branching, and decreased yield per plant. Shade avoidance also increased the plant-to-plant variability in biomass and yield per plant. Per plant yield losses were, however, more closely associated with reductions in biomass accumulation than population variability as the expression of a shade avoidance response did not influence harvest index. While these results suggest that weed induced shade avoidance decreases soybean per plant yield by reducing branching, it is possible the productivity of a soybean stand as a whole may be buffered against these reduction by a similar, but opposite, expression of plasticity in branching. Nomenclature: Soybean, Glycine max (L.) Merr.
Weed Science | 2012
Diego Cerrudo; Eric R. Page; Matthijs Tollenaar; Greg Stewart; Clarence J. Swanton
Abstract The physiological process underlying grain yield (GY) loss in maize as a result of weed competition is not understood clearly. We designed an experiment to test the hypotheses that early season stress caused by the presence of neighboring weeds will increase plant-to-plant variability (PPV) of individual plant dry matter (PDM) within the population. This increase in PPV will reduce GY through a reduction in harvest index (HI). Field experiments were conducted in 2008, 2009, and 2010. A glyphosate-resistant maize hybrid was cropped at a density of 7 plants m−2. As a model weed, winter wheat was seeded at the same time as maize and controlled with glyphosate at the 3rd or 10th to 12th leaf-tip stage of maize. Weed competition early in the development of maize decreased PDM and GY. This reduction in PDM, which occurred early in the development of maize, was attributed initially to a delay in rate of leaf appearance. Reductions in PDM were accompanied by an increase in PPV of PDM. This increase in PPV, however, did not reduce HI and did not contribute to the GY reductions created by weed competition, as hypothesized. As weed control was delayed, a reduction in fraction of photosynthetically active radiation (fIPAR) accounted for a further reduction in PDM and notably, a reduction in DMA from 17th leaf-tip stage through to maturity. The rapid loss of PDM and the subsequent inability to accumulate dry matter during maturation accounted for a rapid decline in kernel number (KN) and kernel weight (KW). Nomenclature: Glyphosate; maize, Zea mays L. ZEAMX; winter wheat, Triticum aestivum L. TRZAW.
Weed Science | 2012
Emily Green-Tracewicz; Eric R. Page; Clarence J. Swanton
Abstract The critical period for weed control (CPWC) is an integral component of integrated weed management strategies. Several studies have defined the CPWC in soybean under varying agronomic conditions, yet none have described the mechanisms involved in crop yield losses caused by weed competition. We hypothesized that under nonresource-limiting conditions, morphological changes resulting from the expression of shade avoidance could be used to define a period of developmental sensitivity to low red-to-far-red ratio (R ∶ FR) that would overlap with the defined CPWC in soybean. Two experiments (a sequential harvest and a weed addition/removal series) were conducted in 2008 and 2009 under controlled environmental conditions to address this hypothesis. Two light-quality treatments were used: (1) high R ∶ FR ratio (i.e., weed-free), and (2) low R ∶ FR ratio (i.e., weedy). The low R ∶ FR ratio treatment induced shade avoidance responses in soybean, which included increases in height, internode length, and the shoot ∶ root ratio, as well as a reduction in biomass accumulation and leaf number. Using the morphological changes in biomass and leaf number observed in the weed addition/removal series, a period of developmental sensitivity to low R ∶ FR was defined between the first trifoliate (V1) and third trifoliate (V3) stages of soybean development. This period was found to be very similar to the CPWC previously defined by field studies of soybean–weed competition. Nomenclature: Soybean, Glycine max (L.) Merr.
Weed Science | 2012
Eric R. Page; Diego Cerrudo; Philip Westra; Mark M. Loux; Kenneth L. Smith; Chuck Foresman; Harold Wright; Clarence J. Swanton
Abstract Control of early-emerging weeds is essential to protect the yield potential of maize. An understanding of the physiological changes that occur as a result of weed interference is required to address variability in yield loss across sites and years. Field trials were conducted at the University of Guelph (UG), the Ohio State University (OSU), and Colorado State University (CSU) during 2009 and 2010. There were six treatments (season-long weedy and weed-free, and weed control at the 1st-, 3rd-, 5th-, and 10th-leaf-tip stages of maize development) and 20 individual plants per plot were harvested at maturity. We hypothesized that, as weed control was delayed, weed interference in the early stages of maize development would increase plant-to-plant variability in plant dry-matter accumulation, which would result in a reduction of grain yield at maturity. The onset of the critical period for weed control (CPWC) occurred on average between the third and fifth leaf tip stages of development (i.e., V1 to V3, respectively). Rate of yield loss following the onset of the CPWC ranged from 0.05 MG ha−1 d−1 at UG 2009 to 0.22 MG ha−1 d−1 at CSU 2010 (i.e., 0.5 and 1.6% d−1, respectively). On average, reductions in kernel number per plant accounted for approximately 65% of the decline in grain yield as weed control was delayed. Biomass partitioning to the grain was stable through early weed removal treatments, increased and peaked at the 10th-leaf-tip time of control, and decreased in the season-long weedy treatment. Plant-to-plant variability in dry matter at maturity and incidence of bareness increased as weed control was delayed. As weed control was delayed, the contribution of plant-to-plant variability at maturity to the overall yield loss was small, relative to the decline of mean plant dry matter. Nomenclature: Atrazine; glyphosate; mesotrione; S-metolachlor; maize, Zea mays L.
Weed Science | 2011
Eric R. Page; Weidong Liu; Diego Cerrudo; E. A. Lee; Clarence J. Swanton
Abstract Previous studies have suggested that the reduction in the root/shoot ratio that accompanies the shade avoidance response may reduce the tolerance of individuals to subsequent nutrient or moisture limitations. In this work, we examined the impact of the shade avoidance response on maize seedling growth and development and the response of these plants to a subsequent abiotic stress. Seedlings were grown in a field fertigation system under two light quality environments, ambient and a low red to far-red ratio, which were designed to simulate weed-free and weedy conditions, respectively. This system also enabled the controlled restriction of water and nutrients, which reduced the relative growth rate of the crop and created a secondary stress. Results of this study indicate that, while the shade avoidance response did reduce the root/shoot ratio in maize, this effect did not reduce plant tolerance to subsequent abiotic stress. Rather, the apparent additivity or synergism of shade avoidance and the secondary stressor on yield loss depended on whether the net effect of these two stressors was sufficiently large to shift the population toward the point where reproductive allometry was broken. Nomenclature: Maize, Zea mays L.
Weed Science | 2006
Susan E. Weaver; Kerry Cluney; Michael Downs; Eric R. Page
Abstract Prickly lettuce is an annual weed that germinates in both the fall and the spring. It is often found in no-till soybeans and winter wheat in Ontario, Canada, as well as along the edges of fields. Field studies were conducted from 2001 to 2004 to estimate crop yield losses, and to characterize the phenology and seed production of prickly lettuce in relation to time of emergence. Prickly lettuce had a large impact on soybean yield, with losses of 60 to 80% at densities of 50 plants m−2 or more. Prickly lettuce density estimated to cause a 10% soybean yield loss varied from 0.2 plants m−2 in 2002 to 1.2 plants m−2 in 2003 and 2004. In winter wheat, prickly lettuce at densities up to 200 plants m−2 caused no detectable yield loss in this study. Plants that emerged in the fall generally were larger, flowered earlier. and produced more seeds than those emerging in spring, but size and fecundity were strongly density-dependent. The number of flowers produced per plant could be estimated from the height of the main stem. Seed production per plant ranged from 2,200 to 67,000 in soybeans, and up to 87,000 in a noncrop area at the edge of the field. Winter wheat harvest interrupted prickly lettuce flowering, and only about 25 to 30% of the plants present in the wheat crop survived harvest and flowered in untreated stubble. These plants produced less than 4,000 seeds per plant. Postharvest control with glyphosate, mowing, or cultivation prevented prickly lettuce seed production in wheat stubble. This study suggests that prickly lettuce populations could build up quickly in continuous no-till soybeans, but rotation with winter wheat and control of plants at the edge of the field would help to limit population growth. Nomenclature: Prickly lettuce, Lactuca serriola L. LACSE; soybean, Glycine max (L.) Merr.; wheat, Triticum aestivum L.
Weed Science | 2006
Eric R. Page; Robert S. Gallagher; Armen R. Kemanian; Hao Zhang; E. Patrick Fuerst
Abstract The spatial and temporal pattern of wild oat emergence in eastern Washington is affected by the steep, rolling hills that dominate this landscape. The objective of this study was to assess the impact of landscape position and crop residue on the emergence phenology of wild oat. Emergence of a natural wild oat infestation was characterized over two growing seasons (2003 and 2004), at two wheat residue levels (0 and 500 g m−2), and at five landscape positions differing in slope, aspect, and elevation in a no-till winter wheat field. Wild oat emerged 1 to 2 wk earlier at south-facing landscape positions than at north-facing landscape positions. Crop residue delayed wild oat emergence by 7 to 13 d relative to bare soil at south-facing positions in 2003 and had a reduced effect on emergence at north-facing landscape positions. Therefore, preserving surface residues tended to synchronize emergence across the landscape and may facilitate better timing of weed control where residue is present. Emergence of wild oat was modeled as a function of thermal time adjusted by water potential using a Weibull function. Temperature explained more variation in the model than water potential. This model explained much of the variability in wild oat emergence among landscape positions over these 2 yr and may be useful as a tool to predict the timing of wild oat emergence. Results also indicate that site-specific modeling is a plausible approach to improving prediction of weed seedling emergence. Nomenclature: Wild oat, Avena fatua L., AVEFA; winter wheat, Triticum aestivum L.
Weed Science | 2011
Scott T. Cressman; Eric R. Page; Clarence J. Swanton
Abstract Crop seedlings detect the presence of neighboring competitors by means of the red to far-red ratio (R/FR) of light reflected from the leaf surfaces of adjacent seedlings. Although previous studies have suggested that shifts in the R/FR initiate crop–weed competition, no studies have documented the R/FR of light reflected from weeds or explored how weed management practices may affect the R/FR. Experiments were conducted to test the following hypotheses: (1) the duration of R/FR signals reflected from the leaf surface of weed seedlings will vary among herbicides following treatment and will decline faster as the dose of a given herbicide increases, (2) the R/FR of reflected light will differ among weed species, and (3) the R/FR of reflected light will decrease as weed seedling leaf area and stage of development increases. Velvetleaf was used as a model weed species to examine herbicide chemistry and dose, and six weed species including Powell amaranth, velvetleaf, Eastern black nightshade, barnyardgrass, proso millet, and green foxtail were evaluated in order to characterize the R/FR of light reflected from their leaf surfaces. Results of this study confirm that the R/FR reflected from the leaf surface of weeds is affected by: herbicide chemistry, herbicide dose, weed species, stage of weed development, and distance of the weed from the crop. The relative decline in the R/FR (as a percent of the untreated control) was most rapid following treatment with paraquat, followed by glufosinate and then glyphosate. As glyphosate dose decreased, so did the reduction in the relative R/FR. Based on reflected R/FR, weed species tended to be grouped into monocots and dicots, with the latter reflecting a lower R/FR per unit leaf area than the former. This disparity was attributed to the compact leaf arrangement and orientation of dicot weed canopies, which may contribute to the greater competitiveness of dicot weeds. Nomenclature: Glyphosate; glufosinate; paraquat; barnyardgrass, Echinochloa crus-galli L. Beauv. ECHCG; Eastern black nightshade, Solanum ptycanthum Dunal. SOLPT; green foxtail, Setaria viridis L. (Beauv.) SETVI; proso millet, Panicum milliaceum L. PANMI; Powell amaranth, Amaranthus powellii S. Wats. AMPO; velvetleaf, Abutilon theophrasti Medik. ABUTH.
Weed Science | 2018
Eric R. Page; Christopher M. Grainger; Martin Laforest; Robert E. Nurse; Istvan Rajcan; Jichul Bae; François J. Tardif
Glyphosate-resistant populations of Conyza canadensis have been spreading at a rapid rate in Ontario, Canada, since first being documented in 2010. Determining the genetic relationship among existing Ontario populations is necessary to understand the spread and selection of the resistant biotypes. The objectives of this study were to: (1) characterize the genetic variation of C. canadensis accessions from the province of Ontario using simple sequence repeat (SSR) markers and (2) investigate the molecular mechanism (s) conferring resistance in these accessions. Ninetyeight C. canadensis accessions were genotyped using 8 SSR markers. Germinable accessions were challenged with glyphosate to determine their dose response, and the sequences of 5-enolpyruvylshikimate-3-phosphate synthase genes 1 and 2 were obtained. Results indicate that a majority of glyphosate-resistant accessions from Ontario possessed a proline to serine substitution at position 106, which has previously been reported to confer glyphosate resistance in other crop and weed species. Accessions possessing this substitution demonstrated notably higher levels of resistance than non-target site resistant (NTSR) accessions from within or outside the growing region and were observed to form a subpopulation genetically distinct from geographically proximate glyphosate-susceptible and NTSR accessions. Although it is unclear whether other non-target site resistance mechanisms are contributing to the levels of resistance observed in target-site resistant accessions, these results indicate that, at a minimum, selection for Pro-106-Ser has occurred in addition to selection for non-target site resistance and has significantly enhanced the levels of resistance to glyphosate in C. canadensis accessions from Ontario. Nomenclature: Glyphosate; Conyza canadensis (L.) Cronq. ERICA
Weed Science | 2017
Jichul Bae; Robert E. Nurse; Marie-Josée Simard; Eric R. Page
Common ragweed is one of the most important weeds in the soybean-producing areas of the United States and Canada. Recently, glyphosate-resistant (GR) biotypes have been reported in 15 states and one Canadian province. Reducing the proliferation of GR common ragweed biotypes is complicated by the high fecundity and complex seed germination behavior exhibited by this species. An experiment was conducted to evaluate the efficacy of late herbicide applications for reducing seed production, seed weight, and seed viability of a GR common ragweed biotype. Herbicide treatments included: water control, glyphosate, 2,4-D, dicamba, 2,4-D plus glyphosate, and dicamba plus glyphosate. Treatments were applied at the appearance of male flower buds (Biologische Bundesanstalt, Bundessortenamt and Chemical industry scale [BBCH] 51) or at the early female flowering stage (BBCH 61 to 63). At BBCH 51, 2,4-D or dicamba applied alone or in a tank mix with glyphosate reduced seed production by an average of 80%. Conversely, seed production following these same treatments applied at BBCH 61 to 63 was not significantly different from when glyphosate was applied alone. At this stage of development, all herbicide treatments reduced seed viability relative to the control; however, treatments containing 2,4-D or dicamba resulted in significantly lower viability than when glyphosate was applied alone. These results suggest that the application of tank mixes containing 2,4-D or dicamba have the potential to limit seed production of GR common ragweed when applied on or before BBCH 51. The development of new technologies that facilitate the in-crop application of tank mixes containing 2,4-D or dicamba may therefore be an effective option for limiting population establishment, seedbank replenishment, and future spread of glyphosate-resistant alleles. Nomenclature: 2,4-D, dicamba, glyphosate, common ragweed, soybean, Ambrosia artemisiifolia L.