Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric Schulze-Bahr is active.

Publication


Featured researches published by Eric Schulze-Bahr.


Nature | 1998

Genetic basis and molecular mechanism for idiopathic ventricular fibrillation

Qiuyun Chen; Glenn E. Kirsch; Danmei Zhang; Ramon Brugada; Josep Brugada; Pedro Brugada; Domenico Potenza; Angel Moya; Martin Borggrefe; Günter Breithardt; Rocio Ortiz-Lopez; Zhiqing Wang; Charles Antzelevitch; Richard E. O'Brien; Eric Schulze-Bahr; Mark T. Keating; Jeffrey A. Towbin; Wang Q

Ventricular fibrillation causes more than 300, 000 sudden deaths each year in the USA alone,. In approximately 5–12% of these cases, there are no demonstrable cardiac or non-cardiac causes to account for the episode, which is therefore classified as idiopathic ventricular fibrillation (IVF). A distinct group of IVF patients has been found to present with a characteristic electrocardiographic pattern. Because of the small size of most pedigrees and the high incidence of sudden death, however, molecular genetic studies of IVF have not yet been done. Because IVF causes cardiac rhythm disturbance, we investigated whether malfunction of ion channels could cause the disorder by studying mutations in the cardiac sodium channel gene SCN5A. We have now identified a missense mutation, a splice-donor mutation, and a frameshift mutation in the coding region of SCN5A in three IVF families. We show that sodium channels with the missense mutation recover from inactivation more rapidly than normal and that the frameshift mutation causes the sodium channel to be non-functional. Our results indicate that mutations in cardiac ion-channel genes contribute to the risk of developing IVF.


Circulation | 2005

Brugada Syndrome: Report of the Second Consensus Conference Endorsed by the Heart Rhythm Society and the European Heart Rhythm Association

Charles Antzelevitch; Pedro Brugada; Martin Borggrefe; Josep Brugada; Ramon Brugada; Domenico Corrado; Ihor Gussak; Herve LeMarec; Koonlawee Nademanee; Andres Ricardo Perez Riera; Wataru Shimizu; Eric Schulze-Bahr; Hanno Tan; Arthur A.M. Wilde

Since its introduction as a clinical entity in 1992, the Brugada syndrome has progressed from being a rare disease to one that is second only to automobile accidents as a cause of death among young adults in some countries. Electrocardiographically characterized by a distinct ST-segment elevation in the right precordial leads, the syndrome is associated with a high risk for sudden cardiac death in young and otherwise healthy adults, and less frequently in infants and children. Patients with a spontaneously appearing Brugada ECG have a high risk for sudden arrhythmic death secondary to ventricular tachycardia/fibrillation. The ECG manifestations of Brugada syndrome are often dynamic or concealed and may be unmasked or modulated by sodium channel blockers, a febrile state, vagotonic agents, alpha-adrenergic agonists, beta-adrenergic blockers, tricyclic or tetracyclic antidepressants, a combination of glucose and insulin, hypo- and hyperkalemia, hypercalcemia, and alcohol and cocaine toxicity. In recent years, an exponential rise in the number of reported cases and a striking proliferation of articles defining the clinical, genetic, cellular, ionic, and molecular aspects of the disease have occurred. The report of the first consensus conference, published in 2002, focused on diagnostic criteria. The present report, which emanated from the second consensus conference held in September 2003, elaborates further on the diagnostic criteria and examines risk stratification schemes and device and pharmacological approaches to therapy on the basis of the available clinical and basic science data.


Heart Rhythm | 2011

HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies: This document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA)

Michael J. Ackerman; Silvia G. Priori; Stephan Willems; Charles I. Berul; Ramon Brugada; Hugh Calkins; A. John Camm; Patrick T. Ellinor; Michael H. Gollob; Robert M. Hamilton; Ray E. Hershberger; Daniel P. Judge; Hervé Le Marec; William J. McKenna; Eric Schulze-Bahr; Christopher Semsarian; Jeffrey A. Towbin; Hugh Watkins; Arthur A.M. Wilde; Christian Wolpert; Douglas P. Zipes

Michael J. Ackerman, MD, PhD, Silvia G. Priori, MD, PhD, Stephan Willems, MD, PhD, Charles Berul, MD, FHRS, CCDS, Ramon Brugada, MD, PhD, Hugh Calkins, MD, FHRS, CCDS, A. John Camm, MD, FHRS, Patrick T. Ellinor, MD, PhD, Michael Gollob, MD, Robert Hamilton, MD, CCDS, Ray E. Hershberger, MD, Daniel P. Judge, MD, Hervè Le Marec, MD, William J. McKenna, MD, Eric Schulze-Bahr, MD, PhD, Chris Semsarian, MBBS, PhD, Jeffrey A. Towbin, MD, Hugh Watkins, MD, PhD, Arthur Wilde, MD, PhD, Christian Wolpert, MD, Douglas P. Zipes, MD, FHRS


Nature Genetics | 2004

Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy

Brenda Gerull; Arnd Heuser; Thomas Wichter; Matthias Paul; Craig T. Basson; Deborah A. McDermott; Bruce B. Lerman; Steve Markowitz; Patrick T. Ellinor; Calum A. MacRae; Stefan Peters; Katja S. Grossmann; Beate Michely; Sabine Sasse-Klaassen; Walter Birchmeier; Rainer Dietz; Günter Breithardt; Eric Schulze-Bahr; Ludwig Thierfelder

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is associated with fibrofatty replacement of cardiac myocytes, ventricular tachyarrhythmias and sudden cardiac death. In 32 of 120 unrelated individuals with ARVC, we identified heterozygous mutations in PKP2, which encodes plakophilin-2, an essential armadillo-repeat protein of the cardiac desmosome. In two kindreds with ARVC, disease was incompletely penetrant in most carriers of PKP2 mutations.


Circulation | 2010

Long-Term Prognosis of Patients Diagnosed With Brugada Syndrome Results From the FINGER Brugada Syndrome Registry

Vincent Probst; Christian Veltmann; Lars Eckardt; Paola G. Meregalli; Fiorenzo Gaita; Hanno L. Tan; Dominique Babuty; Frederic Sacher; Carla Giustetto; Eric Schulze-Bahr; Martin Borggrefe; M. Haissaguerre; Philippe Mabo; H. Le Marec; Christian Wolpert; A. A. M. Wilde

Background— Brugada syndrome is characterized by ST-segment elevation in the right precordial leads and an increased risk of sudden cardiac death (SCD). Fundamental questions remain on the best strategy for assessing the real disease-associated arrhythmic risk, especially in asymptomatic patients. The aim of the present study was to evaluate the prognosis and risk factors of SCD in Brugada syndrome patients in the FINGER (France, Italy, Netherlands, Germany) Brugada syndrome registry. Methods and Results— Patients were recruited in 11 tertiary centers in 4 European countries. Inclusion criteria consisted of a type 1 ECG present either at baseline or after drug challenge, after exclusion of diseases that mimic Brugada syndrome. The registry included 1029 consecutive individuals (745 men; 72%) with a median age of 45 (35 to 55) years. Diagnosis was based on (1) aborted SCD (6%); (2) syncope, otherwise unexplained (30%); and (3) asymptomatic patients (64%). During a median follow-up of 31.9 (14 to 54.4) months, 51 cardiac events (5%) occurred (44 patients experienced appropriate implantable cardioverter-defibrillator shocks, and 7 died suddenly). The cardiac event rate per year was 7.7% in patients with aborted SCD, 1.9% in patients with syncope, and 0.5% in asymptomatic patients. Symptoms and spontaneous type 1 ECG were predictors of arrhythmic events, whereas gender, familial history of SCD, inducibility of ventricular tachyarrhythmias during electrophysiological study, and the presence of an SCN5A mutation were not predictive of arrhythmic events. Conclusions— In the largest series of Brugada syndrome patients thus far, event rates in asymptomatic patients were low. Inducibility of ventricular tachyarrhythmia and family history of SCD were not predictors of cardiac events.


Heart Rhythm | 2010

An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing

Jamie D. Kapplinger; David J. Tester; Marielle Alders; Begoña Benito; Myriam Berthet; Josep Brugada; Pedro Brugada; Véronique Fressart; Alejandra Guerchicoff; Carole Harris-Kerr; Shiro Kamakura; Florence Kyndt; Tamara T. Koopmann; Yoshihiro Miyamoto; Ryan Pfeiffer; Guido D. Pollevick; Vincent Probst; Sven Zumhagen; Matteo Vatta; Jeffrey A. Towbin; Wataru Shimizu; Eric Schulze-Bahr; Charles Antzelevitch; Benjamin A. Salisbury; Pascale Guicheney; Arthur A.M. Wilde; Ramon Brugada; Jean-Jacques Schott; Michael J. Ackerman

BACKGROUND Brugada syndrome (BrS) is a common heritable channelopathy. Mutations in the SCN5A-encoded sodium channel (BrS1) culminate in the most common genotype. OBJECTIVE This study sought to perform a retrospective analysis of BrS databases from 9 centers that have each genotyped >100 unrelated cases of suspected BrS. METHODS Mutational analysis of all 27 translated exons in SCN5A was performed. Mutation frequency, type, and localization were compared among cases and 1,300 ostensibly healthy volunteers including 649 white subjects and 651 nonwhite subjects (blacks, Asians, Hispanics, and others) that were genotyped previously. RESULTS A total of 2,111 unrelated patients (78% male, mean age 39 +/- 15 years) were referred for BrS genetic testing. Rare mutations/variants were more common among BrS cases than control subjects (438/2,111, 21% vs. 11/649, 1.7% white subjects and 31/651, 4.8% nonwhite subjects, respectively, P <10(-53)). The yield of BrS1 genetic testing ranged from 11% to 28% (P = .0017). Overall, 293 distinct mutations were identified in SCN5A: 193 missense, 32 nonsense, 38 frameshift, 21 splice-site, and 9 in-frame deletions/insertions. The 4 most frequent BrS1-associated mutations were E1784K (14x), F861WfsX90 (11x), D356N (8x), and G1408R (7x). Most mutations localized to the transmembrane-spanning regions. CONCLUSION This international consortium of BrS genetic testing centers has added 200 new BrS1-associated mutations to the public domain. Overall, 21% of BrS probands have mutations in SCN5A compared to the 2% to 5% background rate of rare variants reported in healthy control subjects. Additional studies drawing on the data presented here may help further distinguish pathogenic mutations from similarly rare but otherwise innocuous ones found in cases.


Journal of the American College of Cardiology | 2002

Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non–SCN5A-related patients☆

Jeroen P. P. Smits; Lars Eckardt; Vincent Probst; Connie R. Bezzina; Jean-Jacques Schott; Carol Ann Remme; Wilhelm Haverkamp; Günter Breithardt; Denis Escande; Eric Schulze-Bahr; Herve LeMarec; Arthur A.M. Wilde

OBJECTIVES We have tested whether a genotype-phenotype relationship exists in Brugada syndrome (BS) by trying to distinguish BS patients with (carriers) and those without (non-carriers) a mutation in the gene encoding the cardiac sodium channel (SCN5A) using clinical parameters. BACKGROUND Brugada syndrome is an inherited cardiac disease characterized by a varying degree of ST-segment elevation in the right precordial leads and (non)specific conduction disorders. In a minority of patients, SCN5A mutations can be found. Genetic heterogeneity has been demonstrated, but other causally related genes await identification. If a genotype-phenotype relationship exists, this might facilitate screening. METHODS In a multi-center study, we have collected data on demographics, clinical history, family history, electrocardiogram (ECG) parameters, His to ventricle interval (HV), and ECG parameters after pharmacologic challenge with I(Na) blocking drugs for BS patients with (n = 23), or those without (n = 54), an identified SCN5A mutation. RESULTS No differences were found in demographics, clinical history, or family history. Carriers had a significantly longer PQ interval on the baseline ECG and a significantly longer HV time. A PQ interval of > or =210 ms and an HV interval > or =60 ms seem to be predictive for the presence of an SCN5A mutation. After I(Na) blocking drugs, carriers had significantly longer PQ and QRS intervals and more increase in QRS duration. CONCLUSIONS We observed significantly longer conduction intervals on baseline ECG in patients with established SCN5A mutations (PQ and HV interval and, upon class I drugs, more QRS increase). These results concur with the observed loss of function of mutated BS-related sodium channels. Brugada syndrome patients with, and those without, an SCN5A mutation can be differentiated by phenotypical differences.


Circulation | 2006

The Jervell and Lange-Nielsen Syndrome Natural History, Molecular Basis, and Clinical Outcome

Peter J. Schwartz; Carla Spazzolini; Lia Crotti; Jørn Bathen; Jan P. Amlie; Katherine W. Timothy; Maria Shkolnikova; Charles I. Berul; Maria Bitner-Glindzicz; Lauri Toivonen; Minoru Horie; Eric Schulze-Bahr; Isabelle Denjoy

Background— Data on the Jervell and Lange-Nielsen syndrome (J-LN), the long-QT syndrome (LQTS) variant associated with deafness and caused by homozygous or compound heterozygous mutations on the KCNQ1 or on the KCNE1 genes encoding the IKs current, are still based largely on case reports. Methods and Results— We analyzed data from 186 J-LN patients obtained from the literature (31%) and from individual physicians (69%). Most patients (86%) had cardiac events, and 50% were already symptomatic by age 3. Their QTc was markedly prolonged (557±65 ms). Most of the arrhythmic events (95%) were triggered by emotions or exercise. Females are at lower risk for cardiac arrest and sudden death (CA/SD) (hazard ratio, 0.54; 95% CI, 0.34 to 0.88; P=0.01). A QTc >550 ms and history of syncope during the first year of life are independent predictors of subsequent CA/SD. Most mutations (90.5%) are on the KCNQ1 gene; mutations on the KCNE1 gene are associated with a more benign course. β-Blockers have only partial efficacy; 51% of the patients had events despite therapy and 27% had CA/SD. Conclusions— J-LN syndrome is a most severe variant of LQTS, with a very early onset and major QTc prolongation, and in which β-blockers have limited efficacy. Subgroups at relatively lower risk for CA/SD are identifiable and include females, patients with a QTc ≤550 ms, those without events in the first year of life, and those with mutations on KCNE1. Early therapy with implanted cardioverter/defibrillators must be considered.


Journal of Molecular Medicine | 2004

Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients.

Aimee D.C. Paulussen; Ronaldus A. H. J. Gilissen; Martin Armstrong; Pieter A. Doevendans; Peter Verhasselt; H.J.M. Smeets; Eric Schulze-Bahr; Wilhelm Haverkamp; Giinter Breithardt; Nadine Cohen; Jeroen Aerssens

Administration of specific drugs may occasionally induce acquired long QT syndrome (aLQTS), a disorder that predisposes to ventricular arrhythmias, typically of the torsade de pointes (TdP) type, and sudden cardiac death. “Forme fruste” mutations in congenital LQTS (cLQTS) genes have been reported repeatedly as the underlying cause of aLQTS, and are therefore considered as an important risk factor. We evaluated the impact of genetic susceptibility for aLQTS through mutations in cLQTS genes. Five cLQTS genes (KCNH2, KCNQ1, SCN5A, KCNE1, KCNE2) were thoroughly screened for genetic variations in 32 drug-induced aLQTS patients with confirmed TdP and 32 healthy individuals. Missense forme frust mutations were identified in four aLQTS patients: D85N in KCNE1 (two cases), T8A in KCNE2, and P347S in KCNH2. Three other missense variations were found both in patients and controls, and are thus unlikely to significantly influence aLQTS susceptibility. In addition, 13 silent and six intronic variations were detected, four of which were found in a single aLQTS patient but not in the controls. We conclude that missense mutations in the examined cLQTS genes explain only a minority of aLQTS cases.


Nature Genetics | 2013

Common variants at SCN5A-SCN10A and HEY2 are associated with Brugada syndrome, a rare disease with high risk of sudden cardiac death

Connie R. Bezzina; Julien Barc; Yuka Mizusawa; Carol Ann Remme; Jean-Baptiste Gourraud; Floriane Simonet; Arie O. Verkerk; Peter J. Schwartz; Lia Crotti; Federica Dagradi; Pascale Guicheney; Véronique Fressart; Antoine Leenhardt; Charles Antzelevitch; Susan Bartkowiak; Martin Borggrefe; Rainer Schimpf; Eric Schulze-Bahr; Sven Zumhagen; Elijah R. Behr; Rachel Bastiaenen; Jacob Tfelt-Hansen; Morten S. Olesen; Stefan Kääb; Britt M. Beckmann; Peter Weeke; Hiroshi Watanabe; Naoto Endo; Tohru Minamino; Minoru Horie

Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) and near the HEY2 gene (rs9388451). Independent replication confirmed both signals (meta-analyses: rs10428132, P = 1.0 × 10−68; rs9388451, P = 5.1 × 10−17) and identified one additional signal in SCN5A (at 3p21; rs11708996, P = 1.0 × 10−14). The cumulative effect of the three loci on disease susceptibility was unexpectedly large (Ptrend = 6.1 × 10−81). The association signals at SCN5A-SCN10A demonstrate that genetic polymorphisms modulating cardiac conduction can also influence susceptibility to cardiac arrhythmia. The implication of association with HEY2, supported by new evidence that Hey2 regulates cardiac electrical activity, shows that Brugada syndrome may originate from altered transcriptional programming during cardiac development. Altogether, our findings indicate that common genetic variation can have a strong impact on the predisposition to rare diseases.

Collaboration


Dive into the Eric Schulze-Bahr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge