Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erica Sarchielli is active.

Publication


Featured researches published by Erica Sarchielli.


The Journal of Sexual Medicine | 2009

Testosterone Partially Ameliorates Metabolic Profile and Erectile Responsiveness to PDE5 Inhibitors in an Animal Model of Male Metabolic Syndrome

Sandra Filippi; Linda Vignozzi; Annamaria Morelli; Aravinda Chavalmane; Erica Sarchielli; Benedetta Fibbi; Farid Saad; Peter Sandner; Peggy Ruggiano; Gabriella Barbara Vannelli; Edoardo Mannucci; Mario Maggi

INTRODUCTION Metabolic syndrome (MetS) is a clustering of cardio-metabolic risk factors (hyperglycemia, hypertension, dyslipidemia, visceral fat accumulation) that is also associated with hypogonadism and erectile dysfunction (ED). AIM To clarify the relationships among MetS, hypogonadism, and ED, we developed an animal model of MetS. METHODS Male rabbits fed a high-fat diet (HFD), with or without testosterone (T) supplementation, were compared with control rabbits (fed a standard chow) and with rabbits made hypogonadal by a single injection of a long-acting GnRH-analog, triptorelin. MAIN OUTCOME MEASURES Evaluation of metabolic disturbances (plasma glucose, cholesterol, triglycerides, testosterone, LH, FSH level, glucose tolerance, mean arterial pressure, visceral fat accumulation), and corpora cavernosa (CC) relaxant capacity (in vitro contractility study) in HFD animals as compared with control, GnRH analog-treated rabbits, and T-supplemented HFD rabbits. RESULTS HFD rabbits showed all the features of MetS. HFD induced hypogonadotropic hypogonadism is characterized by a reduction of plasma T, FSH, LH levels, testis and seminal vesicles weight, and testicular steroidogenic enzymes. Such a phenotype is similar to that induced by triptorelin administration. A reduced GnRH immunopositivity in hypothalamus suggests a central origin of HFD-related hypogonadism. HFD also induced penile alterations, as demonstrated by a reduction of acetylcholine-and electrical field stimulation-induced CC relaxation, hyper-responsiveness to the NO donor, SNP, and unresponsiveness to PDE5 inhibitors. Similar penile alterations were observed in triptorelin treated rabbit. In HFD, as well as in triptorelin treated rabbits, PDE5 and eNOS mRNA expression quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) were significantly decreased. T administration prevented almost all penile alterations observed in HFD rabbits. T treatment dramatically reduced HFD-induced visceral obesity, partially ameliorating also the metabolic profile. CONCLUSION We have developed an animal model of MetS associated with hypogonadotropic hypogonadism and penile alterations including unresponsiveness to PDE5 inhibitors. T supplementation was able to partially revert HFD-induced phenotype.


Journal of Endocrinology | 2012

Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit.

Linda Vignozzi; Annamaria Morelli; Erica Sarchielli; Paolo Comeglio; Sandra Filippi; Ilaria Cellai; Elena Maneschi; Sergio Serni; Mauro Gacci; Marco Carini; Marie-Pierre Piccinni; Farid Saad; Luciano Adorini; Gabriella Barbara Vannelli; Mario Maggi

Metabolic syndrome (MetS) and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) are often associated. One of their common denominators is hypogonadism. However, testosterone supplementation is limited by concerns for potential prostatic side effects. The objective was to determine whether MetS-associated prostate alterations are prevented by testosterone supplementation. We used a previously described animal model of MetS, obtained by feeding male rabbits a high-fat diet (HFD) for 12 weeks. Subsets of HFD rabbits were treated with testosterone or with the farnesoid X receptor agonist INT-747. Rabbits fed a standard diet were used as controls. HFD-animals develop hypogonadism and all the MetS features: hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and visceral obesity. In addition, HFD-animals show a prostate inflammation. Immunohistochemical analysis demonstrated that HFD-induced prostate fibrosis, hypoxia, and inflammation. The mRNA expression of several proinflammatory (IL8, IL6, IL1β, and TNFα), T lymphocyte (CD4, CD8, Tbet, Gata3, and ROR γt), macrophage (TLR2, TLR4, and STAMP2), neutrophil (lactoferrin), inflammation (COX2 and RAGE), and fibrosis/myofibroblast activation (TGFβ, SM22α, αSMA, RhoA, and ROCK1/ROCK2) markers was significantly increased in HFD prostate. Testosterone, as well as INT-747, treatment prevented some MetS features, although only testosterone normalized all the HFD-induced prostate alterations. Interestingly, the ratio between testosterone and estradiol plasma level retains a significant, negative, association with all the fibrosis and the majority of inflammatory markers analyzed. These data highlight that testosterone protects rabbit prostate from MetS-induced prostatic hypoxia, fibrosis, and inflammation, which can play a role toward the development/progression of BPH/LUTS.


The Journal of Sexual Medicine | 2011

Phosphodiesterase Type 5 Expression in Human and Rat Lower Urinary Tract Tissues and the Effect of Tadalafil on Prostate Gland Oxygenation in Spontaneously Hypertensive Rats

Annamaria Morelli; Erica Sarchielli; Paolo Comeglio; Sandra Filippi; Rosa Mancina; Mauro Gacci; Linda Vignozzi; Marco Carini; Gabriella Barbara Vannelli; Mario Maggi

INTRODUCTION In humans, prostate phosphodiesterase type 5 inhibitors (PDE5) expression was prominently localized in the endothelial and smooth muscle cells of the vascular bed, suggesting a possible action of PDE5 inhibitors (PDE5i) on prostate blood flow. AIM To investigate PDE5 expression in human and rat lower urinary tract (LUT) tissues, including vasculature, and determine the effects of PDE5 inhibition with tadalafil on prostatic blood perfusion. MAIN OUTCOME MEASURES Human vesicular-deferential arteries (which originate from the inferior vesical artery, the main arterial source of blood supply to the bladder and prostate) were analyzed for PDE5 expression and activity. The effects of tadalafil on prostate oxygenation were studied in spontaneously hypertensive rats (SHR), characterized by ischemia/hypoxia of the genitourinary tract. METHODS PDE5 expression was evaluated by quantitative reverse transcription-polymerase chain reaction and immunohistochemistry. SHR were treated with tadalafil (2 mg/kg/day) for 1, 7, or 28 days and compared with untreated SHR and the unaffected counterpart Wistar-Kyoto (WKY) rats. Prostate oxygenation was detected by Hypoxyprobe-1 and hypoxia markers (hypoxia-inducible factor-1α[HIF-1α] and endothelin-1 type B [ETB]) immunostaining. RESULTS Human vesicular-deferential artery expressed high levels of PDE5, similar to corpora cavernosa, immunolocalized in the endothelial and smooth muscle layer. In these arteries, tadalafil inhibited cyclic guanosine monophosphate breakdown (half maximal inhibitory concentration (IC(50) ) in the low nanomolar range, as in corpora cavernosa) and increased the relaxant response to sodium nitroprusside. SHR prostate resulted markedly hypoxic (hypoxyprobe immunopositivity) and positive for HIF-1α and ETB, while tadalafil treatment restored oxygenation to WKY level at each time point. The mRNA expression of the HIF-1α target gene, BCL2/adenovirus E1B 19 kDa interacting protein 3, was significantly increased in SHR prostate and partially restored to WKY level by tadalafil. CONCLUSION Human vesicular-deferential artery is characterized by a high expression and activity of PDE5, which was inhibited by tadalafil in vitro. In SHR, tadalafil increases prostate tissue oxygenation, thus suggesting a possible mechanism through which PDE5i exert beneficial effects on LUT symptoms.


Clinical and Experimental Ophthalmology | 2010

Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea

Rita Mencucci; Mirca Marini; Iacopo Paladini; Erica Sarchielli; Eleonora Sgambati; Ugo Menchini; Gabriella Barbara Vannelli

Purpose:  To evaluate the effects of corneal cross‐linking on keratocytes and collagen fibres in human corneas.


The Journal of Sexual Medicine | 2009

Atorvastatin Ameliorates Sildenafil-Induced Penile Erections in Experimental Diabetes by Inhibiting Diabetes-Induced RhoA/Rho-Kinase Signaling Hyperactivation

Annamaria Morelli; Aravinda Chavalmane; Sandra Filippi; Benedetta Fibbi; Enrico Silvestrini; Erica Sarchielli; Xin-Hua Zhang; Linda Vignozzi; Gabriella Barbara Vannelli; Gianni Forti; Mario Maggi

INTRODUCTION One of the proposed mechanisms responsible for diabetes-related erectile dysfunction (ED) is overactivity of RhoA/ROCK signaling, as seen in experimental models of chemical diabetes. AIM Because statins may interfere with RhoA/Rho-kinase (ROCK) signaling through the reduction of geranyl-geranyl pyrophosphate (GGPP), required for RhoA activation, we investigated whether atorvastatin ameliorated diabetes-related ED. METHODS Streptozotocin-induced (8 weeks) diabetic rats and alloxan-induced (8 weeks) diabetic rabbits received atorvastatin (5 mg/kg daily) for the last 2 weeks. In vitro contractility studies were conducted in the rabbit model. In the rat model, sildenafil effect on electrical stimulation (ES)-induced erection was investigated. Atorvastatin action was also analyzed using human fetal penile smooth muscle cells (hfPSMCs) exposed to low (5 mM), high (22 mM), and very high (40 mM) glucose. MAIN OUTCOME MEASURES Atorvastatin effect on hyperglycemia-induced RhoA/ROCK signaling was evaluated using the ROCK inhibitor Y-27632 in both animal models and by analyzing functional effects downstream to RhoA activation in hfPSMCs. RESULTS In both diabetic models, atorvastatin did not affect glycemia, lipid plasma levels, and the hypogonadal state. In diabetic rats, atorvastatin ameliorated the erectile response to the ES of the cavernous nerve and normalized sildenafil effect on erectile function, strongly decreased by diabetes. In penile tissue from diabetic animals, atorvastatin completely restored the diabetes-induced hypersensitivity to Y-27632 and prevented RhoA membrane translocation/activation. In hfPSMCs, high glucose significantly increased not only membrane RhoA expression, but also ROCK activity (increased phosphorylation of the ROCK substrate myosin phosphatase target subunit 1) and several RhoA-dependent functions such as proliferation, migration, and smooth muscle-related gene expression. Atorvastatin restored all the high-glucose-induced effects, an action specifically reverted by GGPP. CONCLUSION Atorvastatin improves diabetes-related ED and restores sildenafil responsiveness, most probably by inhibiting RhoA/ROCK signaling, which underlies several high-glucose-induced derangements in penile smooth muscle cell commitment.


The Prostate | 2009

The vitamin D receptor agonist elocalcitol inhibits IL-8-dependent benign prostatic hyperplasia stromal cell proliferation and inflammatory response by targeting the RhoA/Rho kinase and NF-kB pathways†‡

Giuseppe Penna; Benedetta Fibbi; Susana Amuchastegui; Elisa Corsiero; Gilles Laverny; Enrico Silvestrini; Aravinda Chavalmane; Annamaria Morelli; Erica Sarchielli; Gabriella Barbara Vannelli; Mauro Gacci; Enrico Colli; Mario Maggi; Luciano Adorini

Benign prostatic hyperplasia (BPH) is characterized by an important inflammatory component. Stimulation of human prostate stromal cells from BPH tissues with proinflammatory cytokines leads to secretion of IL‐8, a chemokine involved in BPH pathogenesis. The vitamin D receptor (VDR) agonist elocalcitol can arrest prostate growth in BPH patients, but its mechanism of action in this pathology is still incompletely understood.


The Journal of Sexual Medicine | 2010

Acute vardenafil administration improves bladder oxygenation in spontaneously hypertensive rats.

Annamaria Morelli; Sandra Filippi; Paolo Comeglio; Erica Sarchielli; Aravinda Chavalmane; Linda Vignozzi; Benedetta Fibbi; Enrico Silvestrini; Peter Sandner; Mauro Gacci; Marco Carini; Gabriella Barbara Vannelli; Mario Maggi

INTRODUCTION In human bladder, phosphodiesterase type 5 (PDE5) is present not only in the muscular wall but also in the vascular beds, suggesting a role for PDE5 inhibitors in favoring bladder blood flow and tissue oxygenation. AIM To investigate whether acute administration of vardenafil could affect bladder oxygenation in spontaneously hypertensive rats (SHR), an animal model of naturally occurring overactive bladder. MAIN OUTCOME MEASURES The effect of vardenafil on hypoxia-induced alterations was studied in vivo in SHR by acute dosing (10 mg/kg, 90 minutes before sacrifice) and in vitro in human bladder smooth muscle cells (hBCs). METHODS Bladder oxygenation was detected using the hypoxyprobe immunostaining. The expression of some hypoxia markers (vascular endothelial growth factor [VEGF] and endothelin-1 type B [ETB] receptor) was also evaluated by immunohistochemistry and Western blot. Gene expression in hBC was quantified by real-time reverse transcription-polymerase chain reaction. RESULTS Rat bladder PDE5 immunopositivity was detected in the muscular wall and in the endothelial and smooth muscle cells of blood vessels. In SHR bladder, a significant increase of hypoxic cells, VEGF, and ETB expression was observed when compared with their normotensive counterpart Wistar Kyoto rats (WKY). Vardenafil treatment dramatically decreased hypoxyprobe staining, as well as VEGF and ETB expression in SHR bladder up to WKY level. Accordingly, in SHR bladder, vardenafil administration significantly blunted relaxation induced by the selective ETB agonist IRL-1620. In hBCs, experimental hypoxia significantly induced gene expression of hypoxia markers (carbonic anhydrase IX and VEGF), which was not changed by simultaneous treatment with vardenafil. Conversely, the hypoxia-related induction of smooth muscle-specific genes (alphaSMA, SM22alpha, and desmin) was significantly reduced by vardenafil. CONCLUSIONS SHR showed bladder hypoxia which was significantly reduced by acute vardenafil treatment. Thus, besides relaxing muscular wall, PDE5 inhibition may positively affect urinary vesicle blood perfusion.


Experimental Neurology | 2010

Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington's disease patients after transplantation.

Pasquale Gallina; Marco Paganini; Letizia Lombardini; Mario Mascalchi; Berardino Porfirio; Davide Gadda; Mirca Marini; Pamela Pinzani; Francesca Salvianti; Clara Crescioli; Sandra Bucciantini; Claudia Mechi; Erica Sarchielli; Anna Maria Romoli; Elisabetta Bertini; Serena Urbani; Benedetta Bartolozzi; Maria Teresa De Cristofaro; Silvia Piacentini; Riccardo Saccardi; Alberto Pupi; Gabriella Barbara Vannelli; Nicola Di Lorenzo

Rebuilding brain structure and neural circuitries by transplantation of fetal tissue is a strategy to repair the damaged nervous system and is currently being investigated using striatal primordium in Huntingtons disease (HD) patients. Four HD patients underwent bilateral transplantation with human fetal striatal tissues (9-12 week gestation). Small blocks of whole ganglionic eminencies were processed to obtain cell suspension and then stereotactically grafted in the caudate head and in the putamen. Follow-up period ranged between 18 and 34 months (mean, 24.7 months). Surgery was uneventful. Starting from the fourth month after grafting, neo-generation of metabolically active tissue with striatal-like MRI features was observed in 6 out of 8 grafts. The increase in D2 receptor binding suggested striatal differentiation of the neo-generated tissue in 3 patients. New tissue, connecting the developing grafts with the frontal cortex and, in one case, with the ventral striatum, was also observed. The new tissue growth halted after the ninth month post transplantation. All patients showed stabilization or improvement in some neurological indices. No clinical and imaging signs, suggestive of graft uncontrolled growth, were seen. This study provides the first evidence in humans that neuroblasts of a striatal primordium can develop and move into the brain after neurotransplantation. Primordium development resulted in the building of a new structure with the same imaging features as the corresponding mature structure, combined with short- and long-distance targeted migration of neuroblasts. The results of this study support both the reconstructive potential of fetal tissue and the remarkably retained plasticity of adult brain. Further studies are necessary to assess the clinical efficacy of the human fetal striatal transplantation.


The Journal of Sexual Medicine | 2009

Vardenafil modulates bladder contractility through cGMP-mediated inhibition of RhoA/Rho kinase signaling pathway in spontaneously hypertensive rats.

Annamaria Morelli; Sandra Filippi; Peter Sandner; Benedetta Fibbi; Aravinda Chavalmane; Enrico Silvestrini; Erica Sarchielli; Linda Vignozzi; Mauro Gacci; Marco Carini; Gabriella Barbara Vannelli; Mario Maggi

INTRODUCTION Phosphodiesterase type 5 inhibitors (PDE5i), the most widely used drugs for erectile dysfunction, could also improve lower urinary tract symptoms, essentially due to overactive bladder (OAB), a condition hypothesized to be a result of an increased RhoA/Rho-kinase (ROCK) signaling. Phosphorylation/inactivation of RhoA by cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG) activity has been described in vascular smooth muscle. AIM The aim of this paper was to investigate whether vardenafil-induced cGMP accumulation reduces RhoA/ROCK signaling in bladder. METHODS Spontaneously hypertensive rats (SHRs), a strain genetically prone to develop OAB, were treated with vardenafil (10 mg/kg/day) for 2 weeks. Wistar-Kyoto rats (WKY) were used as control. In vitro experiments were performed in human bladder smooth muscle cells (hBCs). MAIN OUTCOME MEASURES Urodynamic parameters were registered in vivo in anesthetized WKY and SHRs. RhoA/ROCK activity in bladder was evaluated by molecular and functional studies in tissues and cells. RESULTS The intercontraction interval and bladder capacity, and were decreased in SHRs and restored by vardenafil. The in vitro relaxant effect of the ROCK inhibitor Y-27632 was higher in bladder strips from SHR than from WKY and reduced by vardenafil. Nomega-nitro-L-arginine-methyl-ester (a NO-synthase inhibitor, 40 mg/kg/day during the last week of the 2-week treatment with vardenafil) partially antagonized vardenafil effect on Y-27632 responsiveness. Vardenafil prevented RhoA membrane translocation/activation, decreased ROCK activity, and increased cGMP levels in vivo (rat) and in vitro (hBCs). Exposing hBCs to vardenafil increased Ser(188) RhoA phosphorylation, to the same extent as the PDE5-insensitive PKG agonist Sp-8-Br-PET-cGMP. Moreover, vardenafil inhibited several RhoA-dependent functions in hBCs, including smooth muscle gene transcription and endothelin-1-induced migration. These effects were reverted by the PKG inhibitor KT 5823, further suggesting a cGMP/PKG-dependency. In hBCs, vardenafil was active in the low nanomolar range. CONCLUSIONS This is the first study demonstrating that the effect of vardenafil on OAB could be partially determined by a cGMP-dependent RhoA/ROCK signaling inhibition.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome.

Annamaria Morelli; Paolo Comeglio; Sandra Filippi; Erica Sarchielli; Ilaria Cellai; Linda Vignozzi; Ravit Yehiely‐Cohen; Elena Maneschi; Mauro Gacci; Marco Carini; Luciano Adorini; Gabriella Barbara Vannelli; Mario Maggi

In the male, metabolic syndrome (MetS) is associated to an increased risk of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). A recently established rabbit model of high fat diet (HFD)-induced MetS showed hypogonadism and the presence of prostate gland alterations, including inflammation, hypoxia and fibrosis. The present study investigated whether HFD-induced MetS might also alter bladder structure and function. Testosterone and the farnesoid X receptor (FXR) agonist INT-747, were evaluated for possible effects on HFD bladder. MetS rabbits develop bladder alterations, including fibrosis (reduced muscle/fiber ratio), hypoxia [2-fold increase as compared to regular diet (RD) group], low-grade inflammation (increased leukocyte infiltration and inflammatory markers) and RhoA/ROCK hyperactivity. Bladder strips from HFD rabbits, pre-contracted with carbachol, showed an overactive response to the selective ROCK inhibitor Y-27632. All these HFD-induced bladder alterations were partially blunted by testosterone and almost completely reverted by INT-747. Both treatments prevented some MetS features (glucose intolerance and visceral fat increase), thus suggesting that their effects on bladder could be ascribed to an improvement of the metabolic and/or hypogonadal state. However, a pathogenetic role for hypogonadism has been ruled out as GnRH analog-induced hypogonadal rabbits, fed a regular diet, did not show any detectable bladder alterations. In addition, INT-747 did not revert the MetS-induced hypogonadal state. FXR mRNA was highly expressed in rabbit bladder and positively associated with visceral fat increase. A direct effect of INT-747 on bladder smooth muscle was further suggested by inhibition of RhoA/ROCK-mediated activity by in vitro experiments on isolated cells. In conclusion, HFD-related MetS features are associated to bladder derangements, which are ameliorated by testosterone or INT-747 administration. INT-747 showed the most marked effects in counteracting MetS-related RhoA/ROCK overactivity, thus opening novel therapeutic opportunities for this drug.

Collaboration


Dive into the Erica Sarchielli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Maggi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luciano Adorini

Intercept Pharmaceuticals

View shared research outputs
Researchain Logo
Decentralizing Knowledge