Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Cellai is active.

Publication


Featured researches published by Ilaria Cellai.


Journal of Endocrinology | 2012

Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit.

Linda Vignozzi; Annamaria Morelli; Erica Sarchielli; Paolo Comeglio; Sandra Filippi; Ilaria Cellai; Elena Maneschi; Sergio Serni; Mauro Gacci; Marco Carini; Marie-Pierre Piccinni; Farid Saad; Luciano Adorini; Gabriella Barbara Vannelli; Mario Maggi

Metabolic syndrome (MetS) and benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) are often associated. One of their common denominators is hypogonadism. However, testosterone supplementation is limited by concerns for potential prostatic side effects. The objective was to determine whether MetS-associated prostate alterations are prevented by testosterone supplementation. We used a previously described animal model of MetS, obtained by feeding male rabbits a high-fat diet (HFD) for 12 weeks. Subsets of HFD rabbits were treated with testosterone or with the farnesoid X receptor agonist INT-747. Rabbits fed a standard diet were used as controls. HFD-animals develop hypogonadism and all the MetS features: hyperglycemia, glucose intolerance, dyslipidemia, hypertension, and visceral obesity. In addition, HFD-animals show a prostate inflammation. Immunohistochemical analysis demonstrated that HFD-induced prostate fibrosis, hypoxia, and inflammation. The mRNA expression of several proinflammatory (IL8, IL6, IL1β, and TNFα), T lymphocyte (CD4, CD8, Tbet, Gata3, and ROR γt), macrophage (TLR2, TLR4, and STAMP2), neutrophil (lactoferrin), inflammation (COX2 and RAGE), and fibrosis/myofibroblast activation (TGFβ, SM22α, αSMA, RhoA, and ROCK1/ROCK2) markers was significantly increased in HFD prostate. Testosterone, as well as INT-747, treatment prevented some MetS features, although only testosterone normalized all the HFD-induced prostate alterations. Interestingly, the ratio between testosterone and estradiol plasma level retains a significant, negative, association with all the fibrosis and the majority of inflammatory markers analyzed. These data highlight that testosterone protects rabbit prostate from MetS-induced prostatic hypoxia, fibrosis, and inflammation, which can play a role toward the development/progression of BPH/LUTS.


Journal of Endocrinology | 2012

Antiinflammatory effect of androgen receptor activation in human benign prostatic hyperplasia cells

Linda Vignozzi; Ilaria Cellai; Raffaella Santi; Letizia Lombardelli; Annamaria Morelli; Paolo Comeglio; Sandra Filippi; Federica Logiodice; Marco Carini; Gabriella Nesi; Mauro Gacci; Marie-Pierre Piccinni; Luciano Adorini; Mario Maggi

Progression of benign prostatic hyperplasia (BPH) involves chronic inflammation and immune dysregulation. Preclinical studies have demonstrated that prostate inflammation and tissue remodeling are exacerbated by hypogonadism and prevented by testosterone supplementation. We now investigated whether, in humans, hypogonadism was associated with more severe BPH inflammation and the in vitro effect of the selective androgen receptor agonist dihydrotestosterone (DHT) on cultures of stromal cells derived from BPH patients (hBPH). Histological analysis of inflammatory infiltrates in prostatectomy specimens from a cohort of BPH patients and correlation with serum testosterone level was performed. Even after adjusting for confounding factors, hypogonadism was associated with a fivefold increased risk of intraprostatic inflammation, which was also more severe than that observed in eugonadal BPH patients. Triggering hBPH cells by inflammatory stimuli (tumor necrosis factor α, lipopolysaccharide, or CD4(+)T cells) induced abundant secretion of inflammatory/growth factors (interleukin 6 (IL6), IL8, and basic fibroblast growth factor (bFGF)). Co-culture of CD4(+)T cells with hBPH cells induced secretion of Th1 inducer (IL12), Th1-recruiting chemokine (interferon γ inducible protein 10, IP10), and Th2 (IL9)- and Th17 (IL17)-specific cytokines. Pretreatment with DHT inhibited NF-κB activation and suppressed secretion of several inflammatory/growth factors, with the most pronounced effects on IL8, IL6, and bFGF. Reduced inflammatory cytokine production by T-cells, an increase in IL10, and a significant reduction of T cells proliferation suggested that DHT exerted a broad anti inflammatory effect on testosterone cells [corrected]. In conclusion, our data demonstrate that DHT exerts an immune regulatory role on human prostatic stromal cells, inhibiting their potential to actively induce and/or sustain autoimmune and inflammatory responses.


Journal of Endocrinological Investigation | 2007

Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells

Susanna Benvenuti; Ilaria Cellai; Paola Luciani; Cristiana Deledda; S. Baglioni; Corinna Giuliani; Riccardo Saccardi; Benedetta Mazzanti; S. Dal Pozzo; Edoardo Mannucci; Alessandro Peri; Mario Serio

Thiazolidinediones (TZD) are widely prescribed for the treatment of Type 2 diabetes. Increased loss of bone mass and a higher incidence of fractures have been associated with the use of this class of drugs in post-menopausal women. In vitro studies performed in rodent cell models indicated that rosiglitazone (RGZ), one of the TZD, inhibited osteoblastogenesis and induced adipogenesis in bone marrow progenitor cells. The objective of the present study was to determine for the first time the RGZ-dependent shift from osteoblastogenesis toward adipogenesis using a human cell model. To this purpose, bone marrow-derived mesenchymal stem cells were characterized and induced to differentiate along osteogenic and adipogenic lineages. We found that the exposure to RGZ potentiated adipogenic differentiation and shifted the differentiation toward an osteogenic phenotype into an adipogenic phenotype, as assessed by the appearance of lipid droplets. Accordingly, RGZ markedly increased the expression of the typical marker of adipogenesis fatty-acid binding protein 4, whereas it reduced the expression of Runx2, a marker of osteoblastogenesis. This is the first demonstration that RGZ counteracts osteoblastogenesis and induces a preferential differentiation into adipocytes in human mesenchymal stem cells.


The Prostate | 2013

Fat boosts, while androgen receptor activation counteracts, BPH-associated prostate inflammation.

Linda Vignozzi; Mauro Gacci; Ilaria Cellai; Raffaella Santi; Giovanni Corona; Annamaria Morelli; Giulia Rastrelli; Paolo Comeglio; Arcangelo Sebastanelli; Elena Maneschi; Gabriella Nesi; Cosimo De Nunzio; Andrea Tubaro; Edoardo Mannucci; Marco Carini; Mario Maggi

Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH) are often comorbid. Chronic inflammation, a determinant pathogenic factor for BPH, is a putative link between the two conditions.


The Journal of Steroid Biochemistry and Molecular Biology | 2012

Testosterone and farnesoid X receptor agonist INT-747 counteract high fat diet-induced bladder alterations in a rabbit model of metabolic syndrome.

Annamaria Morelli; Paolo Comeglio; Sandra Filippi; Erica Sarchielli; Ilaria Cellai; Linda Vignozzi; Ravit Yehiely‐Cohen; Elena Maneschi; Mauro Gacci; Marco Carini; Luciano Adorini; Gabriella Barbara Vannelli; Mario Maggi

In the male, metabolic syndrome (MetS) is associated to an increased risk of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). A recently established rabbit model of high fat diet (HFD)-induced MetS showed hypogonadism and the presence of prostate gland alterations, including inflammation, hypoxia and fibrosis. The present study investigated whether HFD-induced MetS might also alter bladder structure and function. Testosterone and the farnesoid X receptor (FXR) agonist INT-747, were evaluated for possible effects on HFD bladder. MetS rabbits develop bladder alterations, including fibrosis (reduced muscle/fiber ratio), hypoxia [2-fold increase as compared to regular diet (RD) group], low-grade inflammation (increased leukocyte infiltration and inflammatory markers) and RhoA/ROCK hyperactivity. Bladder strips from HFD rabbits, pre-contracted with carbachol, showed an overactive response to the selective ROCK inhibitor Y-27632. All these HFD-induced bladder alterations were partially blunted by testosterone and almost completely reverted by INT-747. Both treatments prevented some MetS features (glucose intolerance and visceral fat increase), thus suggesting that their effects on bladder could be ascribed to an improvement of the metabolic and/or hypogonadal state. However, a pathogenetic role for hypogonadism has been ruled out as GnRH analog-induced hypogonadal rabbits, fed a regular diet, did not show any detectable bladder alterations. In addition, INT-747 did not revert the MetS-induced hypogonadal state. FXR mRNA was highly expressed in rabbit bladder and positively associated with visceral fat increase. A direct effect of INT-747 on bladder smooth muscle was further suggested by inhibition of RhoA/ROCK-mediated activity by in vitro experiments on isolated cells. In conclusion, HFD-related MetS features are associated to bladder derangements, which are ameliorated by testosterone or INT-747 administration. INT-747 showed the most marked effects in counteracting MetS-related RhoA/ROCK overactivity, thus opening novel therapeutic opportunities for this drug.


The Prostate | 2013

PDE5 inhibitors blunt inflammation in human BPH: A potential mechanism of action for PDE5 inhibitors in LUTS

Linda Vignozzi; Mauro Gacci; Ilaria Cellai; Annamaria Morelli; Elena Maneschi; Paolo Comeglio; Raffaella Santi; Sandra Filippi; Arcangelo Sebastianelli; Gabriella Nesi; Sergio Serni; Marco Carini; Mario Maggi

Metabolic syndrome (MetS) and benign prostate hyperplasia (BPH)/low urinary tract symptoms (LUTS) are often comorbid. Chronic inflammation is one of the putative links between these diseases. Phosphodiesterase type 5 inhibitors (PDE5i) are recognized as an effective treatment of BPH‐related LUTS. One proposed mechanism of action of PDE5 is the inhibition of intraprostatic inflammation. In this study we investigate whether PDE5i could blunt inflammation in the human prostate.


Endocrinology | 2008

Seladin-1 Is a Fundamental Mediator of the Neuroprotective Effects of Estrogen in Human Neuroblast Long-Term Cell Cultures

Paola Luciani; Cristiana Deledda; Fabiana Rosati; Susanna Benvenuti; Ilaria Cellai; Francesca Dichiara; Matteo Morello; Gabriella Barbara Vannelli; Giovanna Danza; Mario Serio; Alessandro Peri

Estrogen exerts neuroprotective effects and reduces beta-amyloid accumulation in models of Alzheimers disease (AD). A few years ago, a new neuroprotective gene, i.e. seladin-1 (for selective AD indicator-1), was identified and found to be down-regulated in AD vulnerable brain regions. Seladin-1 inhibits the activation of caspase-3, a key modulator of apoptosis. In addition, it has been demonstrated that the seladin-1 gene encodes 3beta-hydroxysterol Delta24-reductase, which catalyzes the synthesis of cholesterol from desmosterol. We have demonstrated previously that in fetal neuroepithelial cells, 17beta-estradiol (17betaE2), raloxifene, and tamoxifen exert neuroprotective effects and increase the expression of seladin-1. The aim of the present study was to elucidate whether seladin-1 is directly involved in estrogen-mediated neuroprotection. Using the small interfering RNA methodology, significantly reduced levels of seladin-1 mRNA and protein were obtained in fetal neuroepithelial cells. Seladin-1 silencing determined the loss of the protective effect of 17betaE2 against beta-amyloid and oxidative stress toxicity and caspase-3 activation. A computer-assisted analysis revealed the presence of half-palindromic estrogen responsive elements upstream from the coding region of the seladin-1 gene. A 1490-bp region was cloned in a luciferase reporter vector, which was transiently cotransfected with the estrogen receptor alpha in Chinese hamster ovarian cells. The exposure to 17betaE2, raloxifene, tamoxifen, and the soy isoflavones genistein and zearalenone increased luciferase activity, thus suggesting a functional role for the half-estrogen responsive elements of the seladin-1 gene. Our data provide for the first time a direct demonstration that seladin-1 may be considered a fundamental mediator of the neuroprotective effects of estrogen.


Journal of Endocrinology | 2012

Testosterone treatment improves metabolic syndrome-induced adipose tissue derangements

Elena Maneschi; Annamaria Morelli; Sandra Filippi; Ilaria Cellai; Paolo Comeglio; Benedetta Mazzanti; Tommaso Mello; Alessandra Calcagno; Erica Sarchielli; Linda Vignozzi; Farid Saad; Roberto Vettor; Gabriella Barbara Vannelli; Mario Maggi

We recently demonstrated that testosterone dosing ameliorated the metabolic profile and reduced visceral adipose tissue (VAT) in a high-fat diet (HFD)-induced rabbit model of metabolic syndrome (MetS). We studied the effects of HFD and in vivo testosterone dosing on VAT function and the adipogenic capacity of rabbit preadipocytes isolated from VAT of regular diet (RD), HFD, and testosterone-treated HFD rabbits. VAT was studied by immunohistochemistry, western blot, and RT-PCR. Isolated rPADs were exposed to adipocyte differentiating mixture (DIM) to evaluate adipogenic potential. Adipocyte size was significantly increased in HFD VAT compared with RD, indicating adipocyte dysfunction, which was normalized by testosterone dosing. Accordingly, perilipin, an anti-lipolytic protein, was significantly increased in HFD VAT, when compared with other groups. HFD VAT was hypoxic, while testosterone dosing normalized VAT oxygenation. In VAT, androgen receptor expression was positively associated with mRNA expression of GLUT4 (SLC2A4) (insulin-regulated glucose transporter) and STAMP2 (STEAP4) (androgen-dependent gene required for insulin signaling). In testosterone-treated HFD VAT, STAMP2 mRNA was significantly increased when compared with the other groups. Moreover, GLUT4 membrane translocation was significantly reduced in HFD VAT, compared with RD, and increased by testosterone. In DIM-exposed preadipocytes from HFD, triglyceride accumulation, adipocyte-specific genes, insulin-stimulated triglyceride synthesis, glucose uptake, and GLUT4 membrane translocation were reduced compared with preadipocytes from RD and normalized by in vivo testosterone dosing. In conclusion, testosterone dosing in a MetS animal model positively affects VAT functions. This could reflect the ability of testosterone in restoring insulin sensitivity in VAT, thus counteracting metabolic alterations.


The Prostate | 2013

Mechanism of action of phosphodiesterase type 5 inhibition in metabolic syndrome-associated prostate alterations: An experimental study in the rabbit.

Annamaria Morelli; Paolo Comeglio; Sandra Filippi; Erica Sarchielli; Linda Vignozzi; Elena Maneschi; Ilaria Cellai; Mauro Gacci; Andrea Lenzi; Gabriella Barbara Vannelli; Mario Maggi

Phosphodiesterase type 5 (PDE5) inhibitors improve benign prostatic hyperplasia (BPH)‐related lower urinary tract symptoms (LUTS), often associated with metabolic syndrome (MetS). This study investigated the effects of PDE5 inhibition in the prostate of rabbits fed a high fat diet (HFD) for 12 weeks. HFD‐rabbits develop the most important features of human MetS (glucose intolerance, dyslipidemia, increased abdominal adiposity, and hypertension), along with hypogonadism and LUT abnormalities (prostate and bladder inflammation/tissue remodeling).


Molecular and Cellular Endocrinology | 2014

Metabolic syndrome induces inflammation and impairs gonadotropin-releasing hormone neurons in the preoptic area of the hypothalamus in rabbits

Annamaria Morelli; Erica Sarchielli; Paolo Comeglio; Sandra Filippi; Linda Vignozzi; Mirca Marini; Giulia Rastrelli; Elena Maneschi; Ilaria Cellai; Luca Persani; Luciano Adorini; Gabriella Barbara Vannelli; Mario Maggi

Rabbits with high fat diet (HFD)-induced metabolic syndrome (MetS) developed hypogonadotropic hypogonadism (HH) and showed a reduced gonadotropin-releasing hormone (GnRH) immunopositivity in the hypothalamus. This study investigated the relationship between MetS and hypothalamic alterations in HFD-rabbits. Gonadotropin levels decreased as a function of MetS severity, hypothalamic gene expression of glucose transporter 4 (GLUT4) and interleukin-6 (IL-6). HFD determined a low-grade inflammation in the hypothalamus, significantly inducing microglial activation, expression and immunopositivity of IL-6, as well as GLUT4 and reduced immunopositivity for KISS1 receptor, whose mRNA expression was negatively correlated to glucose intolerance. Correcting glucose metabolism with obetcholic acid improved hypothalamic alterations, reducing GLUT4 and IL-6 immunopositivity and significantly increasing GnRH mRNA, without, however, preventing HFD-related HH. No significant effects at the hypothalamic level were observed after systemic anti-inflammatory treatment (infliximab). Our results suggest that HFD-induced metabolic derangements negatively affect GnRH neuron function through an inflammatory injury at the hypothalamic level.

Collaboration


Dive into the Ilaria Cellai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Maggi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge