David C. Classen
University of Utah
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by David C. Classen.
The New England Journal of Medicine | 1998
Evans Rs; Pestotnik Sl; David C. Classen; Terry P. Clemmer; Weaver Lk; Orme Jf; Lloyd Jf; John P. Burke
BACKGROUND AND METHODS Optimal decisions about the use of antibiotics and other antiinfective agents in critically ill patients require access to a large amount of complex information. We have developed a computerized decision-support program linked to computer-based patient records that can assist physicians in the use of antiinfective agents and improve the quality of care. This program presents epidemiologic information, along with detailed recommendations and warnings. The program recommends antiinfective regimens and courses of therapy for particular patients and provides immediate feedback. We prospectively studied the use of the computerized antiinfectives-management program for one year in a 12-bed intensive care unit. RESULTS During the intervention period, all 545 patients admitted were cared for with the aid of the antiinfectives-management program. Measures of processes and outcomes were compared with those for the 1136 patients admitted to the same unit during the two years before the intervention period. The use of the program led to significant reductions in orders for drugs to which the patients had reported allergies (35, vs. 146 during the preintervention period; P<0.01), excess drug dosages (87 vs. 405, P<0.01), and antibiotic-susceptibility mismatches (12 vs. 206, P<0.01). There were also marked reductions in the mean number of days of excessive drug dosage (2.7 vs. 5.9, P<0.002) and in adverse events caused by antiinfective agents (4 vs. 28, P<0.02). In analyses of patients who received antiinfective agents, those treated during the intervention period who always received the regimens recommended by the computer program (n=203) had significant reductions, as compared with those who did not always receive the recommended regimens (n= 195) and those in the preintervention cohort (n = 766), in the cost of antiinfective agents (adjusted mean,
Health Affairs | 2011
David C. Classen; Roger K. Resar; Frances A. Griffin; Frank Federico; Terri Frankel; Nancy L. Kimmel; John Whittington; Allan Frankel; Andrew C. Seger; Brent C. James
102 vs.
Infection Control and Hospital Epidemiology | 2008
Deverick J. Anderson; Keith S. Kaye; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Michael Klompas; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert R. Wise; Deborah S. Yokoe
427 and
Infection Control and Hospital Epidemiology | 2008
Jonas Marschall; Leonard A. Mermel; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria J. Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert A. Wise; Deborah S. Yokoe
340, respectively; P<0.001), in total hospital costs (adjusted mean,
Infection Control and Hospital Epidemiology | 2008
Evelyn Lo; Lindsay E. Nicolle; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Jonas Marschall; Leonard A. Mermel; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert J. Wise; Deborah S. Yokoe
26,315 vs.
Infection Control and Hospital Epidemiology | 2008
Susan E. Coffin; Michael Klompas; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert J. Wise; Deborah S. Yokoe
44,865 and
Infection Control and Hospital Epidemiology | 2008
Deborah S. Yokoe; Leonard A. Mermel; Deverick J. Anderson; Kathleen M. Arias; Helen Burstin; David P. Calfee; Susan E. Coffin; Erik R. Dubberke; Victoria Fraser; Dale N. Gerding; Frances A. Griffin; Peter L. Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Jonas Marschall; Lindsay E. Nicolle; David A. Pegues; Trish M. Perl; Kelly Podgorny; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert J. Wise; David C. Classen
35,283; P<0.001), and in the length of the hospital stay days (adjusted mean, 10.0 vs. 16.7 and 12.9; P<0.001). CONCLUSIONS; A computerized antiinfectives-management program can improve the quality of patient care and reduce costs.
The American Journal of Medicine | 1995
Deborah K. Riley; David C. Classen; Lane E. Stevens; John P. Burke
Identification and measurement of adverse medical events is central to patient safety, forming a foundation for accountability, prioritizing problems to work on, generating ideas for safer care, and testing which interventions work. We compared three methods to detect adverse events in hospitalized patients, using the same patient sample set from three leading hospitals. We found that the adverse event detection methods commonly used to track patient safety in the United States today-voluntary reporting and the Agency for Healthcare Research and Qualitys Patient Safety Indicators-fared very poorly compared to other methods and missed 90 percent of the adverse events. The Institute for Healthcare Improvements Global Trigger Tool found at least ten times more confirmed, serious events than these other methods. Overall, adverse events occurred in one-third of hospital admissions. Reliance on voluntary reporting and the Patient Safety Indicators could produce misleading conclusions about the current safety of care in the US health care system and misdirect efforts to improve patient safety.
Infection Control and Hospital Epidemiology | 2008
Erik R. Dubberke; Dale N. Gerding; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; David P. Calfee; Susan E. Coffin; Victoria J. Fraser; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Cassandra D. Salgado; Robert A. Weinstein; Robert A. Wise; Deborah S. Yokoe
Previously published guidelines are available that provide comprehensive recommendations for detecting and preventing healthcare-associated infections. The intent of this document is to highlight practical recommendations in a concise format designed to assist acute care hospitals to implement and prioritize their surgical site infection (SSI) prevention efforts. Refer to the Society for Healthcare Epidemiology of America/Infectious Diseases Society of America “Compendium of Strategies to Prevent Healthcare-Associated Infections” Executive Summary and Introduction and accompanying editorial for additional discussion.1. Burden of SSIs as complications in acute care facilities.a. SSIs occur in 2%-5% of patients undergoing inpatient surgery in the United States.b. Approximately 500,000 SSIs occur each year.2. Outcomes associated with SSIa. Each SSI is associated with approximately 7-10 additional postoperative hospital days.b. Patients with an SSI have a 2-11 times higher risk of death, compared with operative patients without an SSI.i. Seventy-seven percent of deaths among patients with SSI are direcdy attributable to SSI.c. Attributable costs of SSI vary, depending on the type of operative procedure and the type of infecting pathogen; published estimates range from
Infection Control and Hospital Epidemiology | 2008
David P. Calfee; Cassandra D. Salgado; David C. Classen; Kathleen M. Arias; Kelly Podgorny; Deverick J. Anderson; Helen Burstin; Susan E. Coffin; Erik R. Dubberke; Victoria J. Fraser; Dale N. Gerding; Frances A. Griffin; Peter Gross; Keith S. Kaye; Michael Klompas; Evelyn Lo; Jonas Marschall; Leonard A. Mermel; Lindsay Nicolle; David A. Pegues; Trish M. Perl; Sanjay Saint; Robert A. Weinstein; Robert J. Wise; Deborah S. Yokoe
3,000 to