Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erin E. Gabriel is active.

Publication


Featured researches published by Erin E. Gabriel.


The Journal of Infectious Diseases | 2014

Fold Rise in Antibody Titers by Measured by Glycoprotein-Based Enzyme-Linked Immunosorbent Assay Is an Excellent Correlate of Protection for a Herpes Zoster Vaccine, Demonstrated via the Vaccine Efficacy Curve

Peter B. Gilbert; Erin E. Gabriel; Xiaopeng Miao; Xiaoming Li; Shu Chih Su; Janie Parrino; Ivan S. F. Chan

BACKGROUND The phase III Zostavax Efficacy and Safety Trial of 1 dose of licensed zoster vaccine (ZV; Zostavax; Merck) in 50-59-year-olds showed approximately 70% vaccine efficacy (VE) to reduce the incidence of herpes zoster (HZ). An objective of the trial was to assess immune response biomarkers measuring antibodies to varicella zoster virus (VZV) by glycoprotein-based enzyme-linked immunosorbent assay as correlates of protection (CoPs) against HZ. METHODS The principal stratification vaccine efficacy curve framework for statistically evaluating immune response biomarkers as CoPs was applied. The VE curve describes how VE against the clinical end point (HZ) varies across participant subgroups defined by biomarker readout measuring vaccine-induced immune response. The VE curve was estimated using several subgroup definitions. RESULTS The fold rise in VZV antibody titers from the time before immunization to 6 weeks after immunization was an excellent CoP, with VE increasing sharply with fold rise: VE was estimated at 0% for the subgroup with no rise and at 90% for the subgroup with 5.26-fold rise. In contrast, VZV antibody titers measured 6 weeks after immunization did not predict VE, with similar estimated VEs across titer subgroups. CONCLUSIONS The analysis illustrates the value of the VE curve framework for assessing immune response biomarkers as CoPs in vaccine efficacy trials. CLINICAL TRIALS REGISTRATION NCT00534248.


Lancet Infectious Diseases | 2017

Safety and efficacy of PfSPZ Vaccine against Plasmodium falciparum via direct venous inoculation in healthy malaria-exposed adults in Mali: a randomised, double-blind phase 1 trial

Mahamadou S Sissoko; Sara A. Healy; Abdoulaye Katile; Freda Omaswa; Irfan Zaidi; Erin E. Gabriel; Bourama Kamaté; Yacouba Samake; Merepen A. Guindo; Amagana Dolo; Amadou Niangaly; Karamoko Niaré; Amatigue Zeguime; Kourane Sissoko; Hama Diallo; Ismaila Thera; Kelly Ding; Michael P. Fay; Elise O'Connell; Thomas B. Nutman; Sharon Wong-Madden; Tooba Murshedkar; Adam Ruben; Minglin Li; Yonas Abebe; Anita Manoj; Anusha Gunasekera; Sumana Chakravarty; B. Kim Lee Sim; Peter F. Billingsley

BACKGROUND Plasmodium falciparum sporozite (PfSPZ) Vaccine is a metabolically active, non-replicating, whole malaria sporozoite vaccine that has been reported to be safe and protective against P falciparum controlled human malaria infection in malaria-naive individuals. We aimed to assess the safety and protective efficacy of PfSPZ Vaccine against naturally acquired P falciparum in malaria-experienced adults in Mali. METHODS After an open-label dose-escalation study in a pilot safety cohort, we did a double-blind, randomised, placebo-controlled trial based in Donéguébougou and surrounding villages in Mali. We recruited 18-35-year-old healthy adults who were randomly assigned (1:1) in a double-blind manner, with stratification by village and block randomisation, to receive either five doses of 2·7 × 105 PfSPZ or normal saline at days 0, 28, 56, 84, and 140 during the dry season (January to July inclusive). Participants and investigators were masked to group assignments, which were unmasked at the final study visit, 6 months after receipt of the last vaccination. Participants received combined artemether and lumefantrine (four tablets, each containing 20 mg artemether and 120 mg lumefantrine, given twice per day over 3 days for a total of six doses) to eliminate P falciparum before the first and last vaccinations. We collected blood smears every 2 weeks and during any illness for 24 weeks after the fifth vaccination. The primary outcome was the safety and tolerability of the vaccine, assessed as local and systemic reactogenicity and adverse events. The sample size was calculated for the exploratory efficacy endpoint of time to first P falciparum infection beginning 28 days after the fifth vaccination. The safety analysis included all participants who received at least one dose of investigational product, whereas the efficacy analyses included only participants who received all five vaccinations. This trial is registered at ClinicalTrials.gov, number NCT01988636. FINDINGS Between Jan 18 and Feb 24, 2014, we enrolled 93 participants into the main study cohort with 46 participants assigned PfSPZ Vaccine and 47 assigned placebo, all of whom were evaluable for safety. We detected no significant differences in local or systemic adverse events or laboratory abnormalities between the PfSPZ Vaccine and placebo groups, and only grade 1 (mild) local or systemic adverse events occurred in both groups. The most common solicited systemic adverse event in the vaccine and placebo groups was headache (three [7%] people in the vaccine group vs four [9%] in the placebo group) followed by fatigue (one [2%] person in the placebo group), fever (one [2%] person in the placebo group), and myalgia (one [2%] person in each group). The exploratory efficacy analysis included 41 participants from the vaccine group and 40 from the placebo group. Of these participants, 37 (93%) from the placebo group and 27 (66%) from the vaccine group developed P falciparum infection. The hazard ratio for vaccine efficacy was 0·517 (95% CI 0·313-0·856) by time-to-infection analysis (log-rank p=0·01), and 0·712 (0·528-0·918) by proportional analysis (p=0·006). INTERPRETATION PfSPZ Vaccine was well tolerated and safe. PfSPZ Vaccine showed significant protection in African adults against P falciparum infection throughout an entire malaria season. FUNDING US National Institutes of Health Intramural Research Program, Sanaria.


PLOS ONE | 2013

Superior control of HIV-1 replication by CD8+ T cells targeting conserved epitopes: implications for HIV vaccine design.

Pratima Kunwar; Natalie Hawkins; Warren L. Dinges; Yi Liu; Erin E. Gabriel; David A. Swan; Claire E. Stevens; Janine Maenza; Ann C. Collier; James I. Mullins; Tomer Hertz; Xuesong Yu; Helen Horton

A successful HIV vaccine will likely induce both humoral and cell-mediated immunity, however, the enormous diversity of HIV has hampered the development of a vaccine that effectively elicits both arms of the adaptive immune response. To tackle the problem of viral diversity, T cell-based vaccine approaches have focused on two main strategies (i) increasing the breadth of vaccine-induced responses or (ii) increasing vaccine-induced responses targeting only conserved regions of the virus. The relative extent to which set-point viremia is impacted by epitope-conservation of CD8+ T cell responses elicited during early HIV-infection is unknown but has important implications for vaccine design. To address this question, we comprehensively mapped HIV-1 CD8+ T cell epitope-specificities in 23 ART-naïve individuals during early infection and computed their conservation score (CS) by three different methods (prevalence, entropy and conseq) on clade-B and group-M sequence alignments. The majority of CD8+ T cell responses were directed against variable epitopes (p<0.01). Interestingly, increasing breadth of CD8+ T cell responses specifically recognizing conserved epitopes was associated with lower set-point viremia (r = - 0.65, p = 0.009). Moreover, subjects possessing CD8+ T cells recognizing at least one conserved epitope had 1.4 log10 lower set-point viremia compared to those recognizing only variable epitopes (p = 0.021). The association between viral control and the breadth of conserved CD8+ T cell responses may be influenced by the method of CS definition and sequences used to determine conservation levels. Strikingly, targeting variable versus conserved epitopes was independent of HLA type (p = 0.215). The associations with viral control were independent of functional avidity of CD8+ T cell responses elicited during early infection. Taken together, these data suggest that the next-generation of T-cell based HIV-1 vaccines should focus on strategies that can elicit CD8+ T cell responses to multiple conserved epitopes of HIV-1.


PLOS ONE | 2016

Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults

Kawsar R. Talaat; Ruth D. Ellis; Janet Hurd; Autumn Hentrich; Erin E. Gabriel; Noreen A. Hynes; Kelly M. Rausch; Daming Zhu; Olga Muratova; Raul Herrera; Charles Anderson; David G. Jones; Joan Aebig; Sarah Brockley; Nicholas J. MacDonald; Xiaowei Wang; Michael P. Fay; Sara A. Healy; Anna P. Durbin; David L. Narum; Yimin Wu; Patrick E. Duffy

Transmission-blocking vaccines (TBVs) that target sexual stage parasite development could be an integral part of measures for malaria elimination. Pfs25 is a leading TBV candidate, and previous studies conducted in animals demonstrated an improvement of its functional immunogenicity after conjugation to EPA, a recombinant, detoxified ExoProtein A from Pseudomonas aeruginosa. In this report, we describe results of an open-label, dose-escalating Phase 1 trial to assess the safety and immunogenicity of Pfs25-EPA conjugates formulated with Alhydrogel®. Thirty malaria-naïve healthy adults received up to four doses of the conjugate vaccine, with 8, 16, or 47 μg of conjugated Pfs25 mass, at 0, 2, 4, and 10 months. Vaccinations were generally well tolerated. The majority of solicited adverse events were mild in severity with pain at the injection site the most common complaint. Anemia was the most common laboratory abnormality, but was considered possibly related to the study in only a minority of cases. No vaccine-related serious adverse events occurred. The peak geometric mean anti-Pfs25 antibody level in the highest dose group was 88 (95% CI 53, 147) μg/mL two weeks after the 4th vaccination, and declined to near baseline one year later. Antibody avidity increased over successive vaccinations. Transmission blocking activity demonstrated in a standard membrane feeding assay (SMFA) also increased from the second to the third dose, and correlated with antibody titer and, after the final dose, with antibody avidity. These results support the further evaluation of Pfs25-EPA/Alhydrogel® in a malaria-endemic population.


Blood | 2012

Association of Fcγ receptor IIIa genotype with the rate of HIV infection after gp120 vaccination

Donald N. Forthal; Erin E. Gabriel; Angela Wang; Gary Landucci; Tran B. Phan

We determined whether polymorphisms in Fcγ receptor (FcγR) IIa or FcγRIIIa genes were associated with outcomes in Vax004, a trial testing recombinant gp120 vaccination in preventing sexually acquired HIV infection. Male subjects (n = 1725), including infected and uninfected vaccinees and placebo recipients, were genotyped. We observed no association between FcγRIIa genotype and infection rate in vaccinees or placebo recipients. However, FcγRIIIa genotype was associated with infection rate among vaccinees (P = .035). Exploratory analyses revealed that vaccinees homozygous for the FcγRIIIa V allele in the lowest behavioral risk group had a greater rate of infection than low risk vaccinees with at least 1 F allele (hazard ratio [HR] = 3.52; P = .002). No such association was seen among vaccinees with high-risk behaviors or among placebo recipients in either risk stratum. Vaccinated low-risk VV subjects had a greater infection rate than low-risk VV placebo recipients (HR = 4.51; P = .17) or low-risk placebo recipients with any genotype (HR = 4.72; P = .002). Moreover, low-risk VV vaccinees had infection rates similar to individuals with high behavioral risk, irrespective of genotype. Our results generate the hypothesis that recombinant gp120 vaccine may have increased the likelihood of acquiring HIV infection in individuals with the VV genotype (present in ~ 10% of the population) at low behavioral risk of infection.


PLOS ONE | 2012

MRKAd5 HIV-1 Gag/Pol/Nef Vaccine-Induced T-Cell Responses Inadequately Predict Distance of Breakthrough HIV-1 Sequences to the Vaccine or Viral Load

Holly Janes; Nicole Frahm; Allan C. deCamp; Morgane Rolland; Erin E. Gabriel; Julian Wolfson; Tomer Hertz; Esper G. Kallas; Paul A. Goepfert; David P. Friedrich; Lawrence Corey; James I. Mullins; M. Juliana McElrath; Peter B. Gilbert

Background The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0·04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0·06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0·04; Pol p = 0·13; Gag p = 0·89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p>0·50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4·7 vs 5·1) but the difference was not significant (p = 0·27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0·30). Interpretation Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.


Journal of Immunological Methods | 2012

Optimization and qualification of a multiplex bead array to assess cytokine and chemokine production by vaccine-specific cells.

Olivier D. Defawe; Youyi Fong; Evgenia Vasilyeva; Melissa Pickett; Donald K. Carter; Erin E. Gabriel; Supachai Rerks-Ngarm; Sorachai Nitayaphan; Nicole Frahm; M. Juliana McElrath; Stephen C. De Rosa

The magnitude and functional phenotype (e.g. proliferation, immune stimulation) of vaccine-induced T-cell responses are likely to be critical in defining responses that can control pathogenic challenge. Current multi-parameter flow cytometric techniques may not be sufficient to measure all of these different functions, since characterizing T-cell responses by flow cytometry is presently limited to concurrent measurement of at most 10 cytokines/chemokines. Here, we describe extensive studies conducted using standardized GCLP procedures to optimize and qualitatively/quantitatively qualify a multiplex bead array (MBA) performed on supernatant collected from stimulated peripheral blood mononuclear cells (PBMC) to assess 12 cytokines and chemokines of interest. Our optimized MBA shows good precision (intra-assay, inter-day, inter-technician; coefficients of variation <30%) and linearity for most of the analytes studied. We also developed positivity criteria that allow us to define a response as positive or negative with a high degree of confidence. In conclusion, we provide a detailed description of the qualification of an MBA, which permits quantitative and qualitative evaluation of vaccine-induced immunogenicity and analysis of immune correlates of protection. This assay provides an excellent complement to the existing repertoire of assays for assessing immunogenicity in HIV vaccine clinical trials.


Biostatistics | 2014

Evaluating principal surrogate endpoints with time-to-event data accounting for time-varying treatment efficacy

Erin E. Gabriel; Peter B. Gilbert

Principal surrogate (PS) endpoints are relatively inexpensive and easy to measure study outcomes that can be used to reliably predict treatment effects on clinical endpoints of interest. Few statistical methods for assessing the validity of potential PSs utilize time-to-event clinical endpoint information and to our knowledge none allow for the characterization of time-varying treatment effects. We introduce the time-dependent and surrogate-dependent treatment efficacy curve,


Statistical Communications in Infectious Diseases | 2011

A Sequential Phase 2b Trial Design for Evaluating Vaccine Efficacy and Immune Correlates for Multiple HIV Vaccine Regimens.

Peter B. Gilbert; Douglas Grove; Erin E. Gabriel; Ying Huang; Glenda Gray; Scott M. Hammer; Susan Buchbinder; James G. Kublin; Lawrence Corey; Steven G. Self

{\mathrm {TE}}(t|s)


PLOS ONE | 2016

Pooled-Peptide Epitope Mapping Strategies Are Efficient and Highly Sensitive: An Evaluation of Methods for Identifying Human T Cell Epitope Specificities in Large-Scale HIV Vaccine Efficacy Trials

Andrew J. Fiore-Gartland; Bryce A. Manso; David P. Friedrich; Erin E. Gabriel; Greg Finak; Zoe Moodie; Tomer Hertz; Stephen C. De Rosa; Nicole Frahm; Peter B. Gilbert; M. Juliana McElrath

, and a new augmented trial design for assessing the quality of a biomarker as a PS. We propose a novel Weibull model and an estimated maximum likelihood method for estimation of the

Collaboration


Dive into the Erin E. Gabriel's collaboration.

Top Co-Authors

Avatar

Patrick E. Duffy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Peter B. Gilbert

Fred Hutchinson Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Dean Follmann

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Michael P. Fay

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sara A. Healy

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Steven M. Bradley

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Yimin Wu

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlotte V. Hobbs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Issaka Sagara

University of the Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge