Erna Magnúsdóttir
Wellcome Trust/Cancer Research UK Gurdon Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Erna Magnúsdóttir.
Nature Immunology | 2006
Gislâine A. Martins; Luisa Cimmino; Miriam Shapiro-Shelef; Matthias Szabolcs; Alan J. Herron; Erna Magnúsdóttir; Kathryn Calame
The B lymphocyte–induced maturation protein 1 (Blimp-1) transcriptional repressor is required for terminal differentiation of B lymphocytes. Here we document a function for Blimp-1 in the T cell lineage. Blimp-1-deficient thymocytes showed decreased survival and Blimp-1-deficient mice had more peripheral effector T cells. Mice lacking Blimp-1 developed severe colitis as early as 6 weeks of age, and Blimp-1-deficient regulatory T cells were defective in blocking the development of colitis. Blimp-1 mRNA expression increased substantially in response to T cell receptor stimulation. Compared with wild-type CD4+ T cells, Blimp-1-deficient CD4+ T cells proliferated more and produced excess interleukin 2 and interferon-γ but reduced interleukin 10 after T cell receptor stimulation. These results emphasize a crucial function for Blimp-1 in controlling T cell homeostasis and activation.
Nature Cell Biology | 2013
Erna Magnúsdóttir; Sabine Dietmann; Kazuhiro Murakami; Ufuk Günesdogan; Fuchou Tang; Siqin Bao; Evangelia Diamanti; Kaiqin Lao; Berthold Göttgens; M. Azim Surani
Transitions in cell states are controlled by combinatorial actions of transcription factors. BLIMP1, the key regulator of primordial germ cell (PGC) specification, apparently acts together with PRDM14 and AP2γ. To investigate their individual and combinatorial functions, we first sought an in vitro system for transcriptional readouts and chromatin immunoprecipitation sequencing analysis. We then integrated this data with information from single-cell transcriptome analysis of normal and mutant PGCs. Here we show that BLIMP1 binds directly to repress somatic and cell proliferation genes. It also directly induces AP2γ, which together with PRDM14 initiates the PGC-specific fate. We determined the occupancy of critical genes by AP2γ—which, when computed altogether with those of BLIMP1 and PRDM14 (both individually and cooperatively), reveals a tripartite mutually interdependent transcriptional network for PGCs. We also demonstrate that, in principle, BLIMP1, AP2γ and PRDM14 are sufficient for PGC specification, and the unprecedented resetting of the epigenome towards a basal state.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Erna Magnúsdóttir; Sergey Kalachikov; Koji Mizukoshi; David Savitsky; Akemi Ishida-Yamamoto; Andrey A. Panteleyev; Kathryn Calame
The cornified layer is a compacted lattice of lipid-embedded corneocytes that provides an organisms barrier to the external environment. Cornification is the final differentiative step for epidermal keratinocytes and involves dramatic cell condensation before death. Using conditional gene deletion in mice, we identified the transcriptional repressor Blimp-1 (B lymphocyte-induced maturation protein-1) as an important regulator of keratinocyte transition from the granular to the cornified layer. More than 250 genes are misregulated in conditional knockout epidermis, including those encoding transcription factors, signal transduction components, proteinases, and enzymes involved in lipid metabolism. Steady-state mRNA and ChIP analyses of a subset of these genes provide evidence that nfat5, fos, prdm1, and dusp16 are novel direct targets of Blimp-1. Identifying nfat5 as a target of Blimp-1 repression indicates that cornification involves suppression of normal osmotic regulation in granular cells. Consistently, conditional knockout mice have delayed barrier formation as embryos, enlarged granular layer cells and corneocytes, and a morphologically abnormal cornified layer. These studies provide insight into cornification, identifying transcriptional regulatory circuitry and indicating the importance of blocking osmotic homeostasis.
Journal of Experimental Medicine | 2008
Gislâine A. Martins; Luisa Cimmino; Jerry Liao; Erna Magnúsdóttir; Kathryn Calame
Mice with a T cell–specific deletion of Prdm1, encoding Blimp-1, have aberrant T cell homeostasis and develop fatal colitis. In this study, we show that one critical activity of Blimp-1 in T cells is to repress IL-2, and that it does so by direct repression of Il2 transcription, and also by repression of Fos transcription. Using these mechanisms Blimp-1 participates in an autoregulatory loop by which IL-2 induces Prdm1 expression and thus represses its own expression after T cell activation, ensuring that the immune response is appropriately controlled. This activity of Blimp-1 is important for cytokine deprivation–induced T cell death and for attenuating T cell proliferation in antigen-specific responses both in vitro and in vivo.
Cell Stem Cell | 2012
Astrid Gillich; Siqin Bao; Nils Grabole; Katsuhiko Hayashi; Matthew Trotter; Vincent Pasque; Erna Magnúsdóttir; M. Azim Surani
Summary Epigenetic reprogramming in early germ cells is critical toward the establishment of totipotency, but investigations of the germline events are intractable. An objective cell culture-based system could provide mechanistic insight on how the key determinants of primordial germ cells (PGCs), including Prdm14, induce reprogramming in germ cells to an epigenetic ground state. Here we show a Prdm14-Klf2 synergistic effect that can accelerate and enhance reversion of mouse epiblast stem cells (epiSCs) to a naive pluripotent state, including X reactivation and DNA demethylation. Notably, Prdm14 alone has little effect on epiSC reversion, but it enhances the competence for reprogramming and potentially PGC specification. Reprogramming of epiSCs by the combinatorial effect of Prdm14-Klf2 involves key epigenetic changes, which might have an analogous role in PGCs. Our study provides a paradigm toward a systematic analysis of how other key genes contribute to complex and dynamic events of reprogramming in the germline.
Journal of Immunology | 2008
Luisa Cimmino; Gislaine A. Martins; Jerry Liao; Erna Magnúsdóttir; Gabriele Grunig; Rocio K. Perez; Kathryn Calame
T cell-specific deletion of Blimp-1 causes abnormal T cell homeostasis and function, leading to spontaneous, fatal colitis in mice. Herein we explore the role of Blimp-1 in Th1/Th2 differentiation. Blimp-1 mRNA and protein are more highly expressed in Th2 cells compared with Th1 cells, and Blimp-1 attenuates IFN-γ production in CD4 cells activated under nonpolarizing conditions. Although Blimp-1-deficient T cells differentiate normally to Th2 cytokines in vitro, Blimp-1 is required in vivo for normal Th2 humoral responses to NP-KLH (4-hydroxy-3-nitrophenylacetyl/keyhole lymphocyte hemocyanin) immunization. Lack of Blimp-1 in CD4 T cells causes increased IFN-γ, T-bet, and Bcl-6 mRNA. By chromatin immunoprecipitation we show that Blimp-1 binds directly to a distal regulatory region in the ifng gene and at multiple sites in tbx21 and bcl6 genes. Our data provide evidence that Blimp-1 functions in Th2 cells to reinforce Th2 differentiation by repressing critical Th1 genes.
EMBO Reports | 2013
Nils Grabole; Julia Tischler; Jamie A. Hackett; Shinseog Kim; Fuchou Tang; Harry G. Leitch; Erna Magnúsdóttir; M. Azim Surani
Primordial germ cells (PGCs) and somatic cells originate from postimplantation epiblast cells in mice. As pluripotency is lost upon differentiation of somatic lineages, a naive epigenome and the pluripotency network are re‐established during PGC development. Here we demonstrate that Prdm14 contributes not only to PGC specification, but also to naive pluripotency in embryonic stem (ES) cells by repressing the DNA methylation machinery and fibroblast growth factor (FGF) signalling. This indicates a critical role for Prdm14 in programming PGCs and promoting pluripotency in ES cells.
Cell | 2013
Christian Praetorius; Christine Grill; Simon N. Stacey; Alexander M. Metcalf; David U. Gorkin; Kathleen C. Robinson; Eric Van Otterloo; Reuben S.Q. Kim; Kristin Bergsteinsdottir; Margret H. Ogmundsdottir; Erna Magnúsdóttir; Pravin J. Mishra; Sean Davis; Theresa Guo; M. Raza Zaidi; Agnar Helgason; Martin I. Sigurdsson; Paul S. Meltzer; Glenn Merlino; Valérie Petit; Lionel Larue; Stacie K. Loftus; David Adams; Ulduz Sobhiafshar; N. C. Tolga Emre; William J. Pavan; Robert A. Cornell; Aaron G. Smith; Andrew S. McCallion; David E. Fisher
Sequence polymorphisms linked to human diseases and phenotypes in genome-wide association studies often affect noncoding regions. A SNP within an intron of the gene encoding Interferon Regulatory Factor 4 (IRF4), a transcription factor with no known role in melanocyte biology, is strongly associated with sensitivity of skin to sun exposure, freckles, blue eyes, and brown hair color. Here, we demonstrate that this SNP lies within an enhancer of IRF4 transcription in melanocytes. The allele associated with this pigmentation phenotype impairs binding of the TFAP2A transcription factor that, together with the melanocyte master regulator MITF, regulates activity of the enhancer. Assays in zebrafish and mice reveal that IRF4 cooperates with MITF to activate expression of Tyrosinase (TYR), an essential enzyme in melanin synthesis. Our findings provide a clear example of a noncoding polymorphism that affects a phenotype by modulating a developmental gene regulatory network.
Nature Genetics | 2014
Augustine Kong; Gudmar Thorleifsson; Michael L. Frigge; Gisli Masson; Daniel F. Gudbjartsson; Rasmus Villemoes; Erna Magnúsdóttir; Stefania B. Olafsdottir; Unnur Thorsteinsdottir; Kari Stefansson
Meiotic recombination contributes to genetic diversity by yielding new combinations of alleles. Individuals vary with respect to the genome-wide recombination counts in their gametes. Exploiting data resources in Iceland, we compiled a data set consisting of 35,927 distinct parents and 71,929 parent-offspring pairs. Within this data set, we called over 2.2 million recombination events and imputed variants with sequence-level resolution from 2,261 whole genome–sequenced individuals into the parents to search for variants influencing recombination rate. We identified 13 variants in 8 regions that are associated with genome-wide recombination rate, 8 of which were previously unknown. Three of these variants associate with male recombination rate only, seven variants associate with female recombination rate only and three variants affect both. Two are low-frequency variants with large effects, one of which is estimated to increase the male and female genetic maps by 111 and 416 cM, respectively. This variant, located in an intron, would not be found by exome sequencing.
Development | 2014
Erna Magnúsdóttir; M. Azim Surani
Primordial germ cells (PGCs) are the precursors of sperm and eggs, which generate a new organism that is capable of creating endless new generations through germ cells. PGCs are specified during early mammalian postimplantation development, and are uniquely programmed for transmission of genetic and epigenetic information to subsequent generations. In this Primer, we summarise the establishment of the fundamental principles of PGC specification during early development and discuss how it is now possible to make mouse PGCs from pluripotent embryonic stem cells, and indeed somatic cells if they are first rendered pluripotent in culture.