Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ufuk Günesdogan is active.

Publication


Featured researches published by Ufuk Günesdogan.


Nature Cell Biology | 2013

A tripartite transcription factor network regulates primordial germ cell specification in mice

Erna Magnúsdóttir; Sabine Dietmann; Kazuhiro Murakami; Ufuk Günesdogan; Fuchou Tang; Siqin Bao; Evangelia Diamanti; Kaiqin Lao; Berthold Göttgens; M. Azim Surani

Transitions in cell states are controlled by combinatorial actions of transcription factors. BLIMP1, the key regulator of primordial germ cell (PGC) specification, apparently acts together with PRDM14 and AP2γ. To investigate their individual and combinatorial functions, we first sought an in vitro system for transcriptional readouts and chromatin immunoprecipitation sequencing analysis. We then integrated this data with information from single-cell transcriptome analysis of normal and mutant PGCs. Here we show that BLIMP1 binds directly to repress somatic and cell proliferation genes. It also directly induces AP2γ, which together with PRDM14 initiates the PGC-specific fate. We determined the occupancy of critical genes by AP2γ—which, when computed altogether with those of BLIMP1 and PRDM14 (both individually and cooperatively), reveals a tripartite mutually interdependent transcriptional network for PGCs. We also demonstrate that, in principle, BLIMP1, AP2γ and PRDM14 are sufficient for PGC specification, and the unprecedented resetting of the epigenome towards a basal state.


Molecular Cell | 2014

PRMT5 Protects Genomic Integrity during Global DNA Demethylation in Primordial Germ Cells and Preimplantation Embryos

Shin Seog Kim; Ufuk Günesdogan; Jan J Zylicz; James Alexander Hackett; Delphine Irene Cougot; Siqin Bao; Caroline Lee; Sabine Dietmann; George E. Allen; Roopsha Sengupta; Azim Surani

Summary Primordial germ cells (PGCs) and preimplantation embryos undergo epigenetic reprogramming, which includes comprehensive DNA demethylation. We found that PRMT5, an arginine methyltransferase, translocates from the cytoplasm to the nucleus during this process. Here we show that conditional loss of PRMT5 in early PGCs causes complete male and female sterility, preceded by the upregulation of LINE1 and IAP transposons as well as activation of a DNA damage response. Similarly, loss of maternal-zygotic PRMT5 also leads to IAP upregulation. PRMT5 is necessary for the repressive H2A/H4R3me2s chromatin modification on LINE1 and IAP transposons in PGCs, directly implicating this modification in transposon silencing during DNA hypomethylation. PRMT5 translocates back to the cytoplasm subsequently, to participate in the previously described PIWI-interacting RNA (piRNA) pathway that promotes transposon silencing via de novo DNA remethylation. Thus, PRMT5 is directly involved in genome defense during preimplantation development and in PGCs at the time of global DNA demethylation.


EMBO Reports | 2010

A genetic system to assess in vivo the functions of histones and histone modifications in higher eukaryotes.

Ufuk Günesdogan; Herbert Jäckle; Alf Herzig

Despite the fundamental role of canonical histones in nucleosome structure, there is no experimental system for higher eukaryotes in which basic questions about histone function can be directly addressed. We developed a new genetic tool for Drosophila melanogaster in which the canonical histone complement can be replaced with multiple copies of experimentally modified histone transgenes. This new histone‐replacement system provides a well‐defined and direct cellular assay system for histone function with which to critically test models in chromatin biology dealing with chromatin assembly, variant histone functions and the biological significance of distinct histone modifications in a multicellular organism.


Nature | 2016

NANOG alone induces germ cells in primed epiblast in vitro by activation of enhancers.

Kazuhiro Murakami; Ufuk Günesdogan; Jan J Zylicz; Walfred W. C. Tang; Roopsha Sengupta; Toshihiro Kobayashi; Shinseog Kim; Richard J. Butler; Sabine Dietmann; M. Azim Surani

Nanog, a core pluripotency factor in the inner cell mass of blastocysts, is also expressed in unipotent primordial germ cells (PGCs) in mice, where its precise role is yet unclear. We investigated this in an in vitro model, in which naive pluripotent embryonic stem (ES) cells cultured in basic fibroblast growth factor (bFGF) and activin A develop as epiblast-like cells (EpiLCs) and gain competence for a PGC-like fate. Consequently, bone morphogenetic protein 4 (BMP4), or ectopic expression of key germline transcription factors Prdm1, Prdm14 and Tfap2c, directly induce PGC-like cells (PGCLCs) in EpiLCs, but not in ES cells. Here we report an unexpected discovery that Nanog alone can induce PGCLCs in EpiLCs, independently of BMP4. We propose that after the dissolution of the naive ES-cell pluripotency network during establishment of EpiLCs, the epigenome is reset for cell fate determination. Indeed, we found genome-wide changes in NANOG-binding patterns between ES cells and EpiLCs, indicating epigenetic resetting of regulatory elements. Accordingly, we show that NANOG can bind and activate enhancers of Prdm1 and Prdm14 in EpiLCs in vitro; BLIMP1 (encoded by Prdm1) then directly induces Tfap2c. Furthermore, while SOX2 and NANOG promote the pluripotent state in ES cells, they show contrasting roles in EpiLCs, as Sox2 specifically represses PGCLC induction by Nanog. This study demonstrates a broadly applicable mechanistic principle for how cells acquire competence for cell fate determination, resulting in the context-dependent roles of key transcription factors during development.


eLife | 2015

Chromatin dynamics and the role of G9a in gene regulation and enhancer silencing during early mouse development

Jan J Zylicz; Sabine Dietmann; Ufuk Günesdogan; James Alexander Hackett; Delphine Irene Cougot; Caroline Lee; Azim Surani

Early mouse development is accompanied by dynamic changes in chromatin modifications, including G9a-mediated histone H3 lysine 9 dimethylation (H3K9me2), which is essential for embryonic development. Here we show that genome-wide accumulation of H3K9me2 is crucial for postimplantation development, and coincides with redistribution of enhancer of zeste homolog 2 (EZH2)-dependent histone H3 lysine 27 trimethylation (H3K27me3). Loss of G9a or EZH2 results in upregulation of distinct gene sets involved in cell cycle regulation, germline development and embryogenesis. Notably, the H3K9me2 modification extends to active enhancer elements where it promotes developmentally-linked gene silencing and directly marks promoters and gene bodies. This epigenetic mechanism is important for priming gene regulatory networks for critical cell fate decisions in rapidly proliferating postimplantation epiblast cells. DOI: http://dx.doi.org/10.7554/eLife.09571.001


Philosophical Transactions of the Royal Society B | 2014

Primoridal germ cell specification: a context-dependent cellular differentiation event

Ufuk Günesdogan; Erna Magnúsdóttir; M. Azim Surani

During embryonic development, the foundation of the germline is laid by the specification of primordial germ cells (PGCs) from the postimplantation epiblast via bone morphogenetic protein (BMP) and WNT signalling. While the majority of epiblast cells undergo differentiation towards somatic cell lineages, PGCs initiate a unique cellular programme driven by the cooperation of the transcription factors BLIMP1, PRDM14 and AP2γ. These factors synergistically suppress the ongoing somatic differentiation and drive the re-expression of pluripotency and germ cell-specific genes accompanied by global epigenetic changes. However, an unresolved question is how postimplantation epiblast cells acquire the developmental competence for the PGC fate downstream of BMP/WNT signalling. One emerging concept is that transcriptional enhancers might play a central role in the establishment of developmental competence and the execution of cell fate determination. Here, we discuss recent advances on the specification and reprogramming of PGCs thereby highlighting the concept of enhancer function.


eLife | 2014

Histone supply regulates S phase timing and cell cycle progression

Ufuk Günesdogan; Herbert Jäckle; Alf Herzig

Eukaryotes package DNA into nucleosomes that contain a core of histone proteins. During DNA replication, nucleosomes are disrupted and re-assembled with newly synthesized histones and DNA. Despite much progress, it is still unclear why higher eukaryotes contain multiple core histone genes, how chromatin assembly is controlled, and how these processes are coordinated with cell cycle progression. We used a histone null mutation of Drosophila melanogaster to show that histone supply levels, provided by a defined number of transgenic histone genes, regulate the length of S phase during the cell cycle. Lack of de novo histone supply not only extends S phase, but also causes a cell cycle arrest during G2 phase, and thus prevents cells from entering mitosis. Our results suggest a novel cell cycle surveillance mechanism that monitors nucleosome assembly without involving the DNA repair pathways and exerts its effect via suppression of CDC25 phosphatase String expression. DOI: http://dx.doi.org/10.7554/eLife.02443.001


Current Topics in Developmental Biology | 2016

Developmental Competence for Primordial Germ Cell Fate

Ufuk Günesdogan; M. Azim Surani

During mammalian embryonic development, the trophectoderm and primitive endoderm give rise to extraembryonic tissues, while the epiblast differentiates into all somatic lineages and the germline. Remarkably, only a few classes of signaling pathways induce the differentiation of these progenitor cells into diverse lineages. Accordingly, the functional outcome of a particular signal depends on the developmental competence of the target cells. Thus, developmental competence can be defined as the ability of a cell to integrate intrinsic and extrinsic cues to execute a specific developmental program toward a specific cell fate. Downstream of signaling, there is the combinatorial activity of transcription factors and their cofactors, which is modulated by the chromatin state of the target cells. Here, we discuss the concept of developmental competence, and the factors that regulate this state with reference to the specification of mammalian primordial germ cells.


Biology Open | 2014

Bällchen participates in proliferation control and prevents the differentiation of Drosophila melanogaster neuronal stem cells.

Toma Yakulov; Ufuk Günesdogan; Herbert Jäckle; Alf Herzig

ABSTRACT Stem cells continuously generate differentiating daughter cells and are essential for tissue homeostasis and development. Their capacity to self-renew as undifferentiated and actively dividing cells is controlled by either external signals from a cellular environment, the stem cell niche, or asymmetric distribution of cell fate determinants during cell division. Here we report that the protein kinase Bällchen (BALL) is required to prevent differentiation as well as to maintain normal proliferation of neuronal stem cells of Drosophila melanogaster, called neuroblasts. Our results show that the brains of ball mutant larvae are severely reduced in size, which is caused by a reduced proliferation rate of the neuroblasts. Moreover, ball mutant neuroblasts gradually lose the expression of the neuroblast determinants Miranda and aPKC, suggesting their premature differentiation. Our results indicate that BALL represents a novel cell intrinsic factor with a dual function regulating the proliferative capacity and the differentiation status of neuronal stem cells during development.


Philosophical Transactions of the Royal Society B | 2014

Correction to 'Primoridal germ cell specification: a context-dependent cellular differentiation event'

Ufuk Günesdogan; Erna Magnúsdóttir; M. Azim Surani

Collaboration


Dive into the Ufuk Günesdogan's collaboration.

Top Co-Authors

Avatar

M. Azim Surani

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erna Magnúsdóttir

Wellcome Trust/Cancer Research UK Gurdon Institute

View shared research outputs
Top Co-Authors

Avatar

Jan J Zylicz

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Azim Surani

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Caroline Lee

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge