Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ernesto Diaz-Flores is active.

Publication


Featured researches published by Ernesto Diaz-Flores.


Nature Genetics | 2013

The genomic landscape of hypodiploid acute lymphoblastic leukemia

Linda Holmfeldt; Lei Wei; Ernesto Diaz-Flores; Michael D. Walsh; Jinghui Zhang; Li Ding; Debbie Payne-Turner; Michelle L. Churchman; Anna Andersson; Shann Ching Chen; Kelly McCastlain; Jared Becksfort; Jing Ma; Gang Wu; Samir N. Patel; Susan L. Heatley; Letha A. Phillips; Guangchun Song; John Easton; Matthew Parker; Xiang Chen; Michael Rusch; Kristy Boggs; Bhavin Vadodaria; Erin Hedlund; Christina D. Drenberg; Sharyn D. Baker; Deqing Pei; Cheng Cheng; Robert Huether

The genetic basis of hypodiploid acute lymphoblastic leukemia (ALL), a subtype of ALL characterized by aneuploidy and poor outcome, is unknown. Genomic profiling of 124 hypodiploid ALL cases, including whole-genome and exome sequencing of 40 cases, identified two subtypes that differ in the severity of aneuploidy, transcriptional profiles and submicroscopic genetic alterations. Near-haploid ALL with 24–31 chromosomes harbor alterations targeting receptor tyrosine kinase signaling and Ras signaling (71%) and the lymphoid transcription factor gene IKZF3 (encoding AIOLOS; 13%). In contrast, low-hypodiploid ALL with 32–39 chromosomes are characterized by alterations in TP53 (91.2%) that are commonly present in nontumor cells, IKZF2 (encoding HELIOS; 53%) and RB1 (41%). Both near-haploid and low-hypodiploid leukemic cells show activation of Ras-signaling and phosphoinositide 3-kinase (PI3K)-signaling pathways and are sensitive to PI3K inhibitors, indicating that these drugs should be explored as a new therapeutic strategy for this aggressive form of leukemia.


Cancer Cell | 2008

Single-Cell Profiling Identifies Aberrant STAT5 Activation in Myeloid Malignancies with Specific Clinical and Biologic Correlates

Nikesh Kotecha; Nikki J. Flores; Jonathan M. Irish; Erin F. Simonds; Debbie Sakai; Sophie Archambeault; Ernesto Diaz-Flores; Marc A. Coram; Kevin Shannon; Garry P. Nolan; Mignon L. Loh

Progress in understanding the molecular pathogenesis of human myeloproliferative disorders (MPDs) has led to guidelines incorporating genetic assays with histopathology during diagnosis. Advances in flow cytometry have made it possible to simultaneously measure cell type and signaling abnormalities arising as a consequence of genetic pathologies. Using flow cytometry, we observed a specific evoked STAT5 signaling signature in a subset of samples from patients suspected of having juvenile myelomonocytic leukemia (JMML), an aggressive MPD with a challenging clinical presentation during active disease. This signature was a specific feature involving JAK-STAT signaling, suggesting a critical role of this pathway in the biological mechanism of this disorder and indicating potential targets for future therapies.


Genes & Development | 2010

p53 loss promotes acute myeloid leukemia by enabling aberrant self-renewal

Zhen Zhao; Johannes Zuber; Ernesto Diaz-Flores; Laura Lintault; Scott C. Kogan; Kevin Shannon; Scott W. Lowe

The p53 tumor suppressor limits proliferation in response to cellular stress through several mechanisms. Here, we test whether the recently described ability of p53 to limit stem cell self-renewal suppresses tumorigenesis in acute myeloid leukemia (AML), an aggressive cancer in which p53 mutations are associated with drug resistance and adverse outcome. Our approach combined mosaic mouse models, Cre-lox technology, and in vivo RNAi to disable p53 and simultaneously activate endogenous Kras(G12D)-a common AML lesion that promotes proliferation but not self-renewal. We show that p53 inactivation strongly cooperates with oncogenic Kras(G12D) to induce aggressive AML, while both lesions on their own induce T-cell malignancies with long latency. This synergy is based on a pivotal role of p53 in limiting aberrant self-renewal of myeloid progenitor cells, such that loss of p53 counters the deleterious effects of oncogenic Kras on these cells and enables them to self-renew indefinitely. Consequently, myeloid progenitor cells expressing oncogenic Kras and lacking p53 become leukemia-initiating cells, resembling cancer stem cells capable of maintaining AML in vivo. Our results establish an efficient new strategy for interrogating oncogene cooperation, and provide strong evidence that the ability of p53 to limit aberrant self-renewal contributes to its tumor suppressor activity.


Nature | 2009

Response and resistance to MEK inhibition in leukaemias initiated by hyperactive Ras

Jennifer O. Lauchle; Doris Kim; Doan T. Le; Keiko Akagi; Michael Crone; Kimberly Krisman; Kegan Warner; Qing Li; Kristen Coakley; Ernesto Diaz-Flores; Matthew F. Gorman; Sally Przybranowski; Mary Tran; Scott C. Kogan; Jeroen P. Roose; Neal G. Copeland; Nancy A. Jenkins; Luis F. Parada; Linda Wolff; Judith Sebolt-Leopold; Kevin Shannon

The cascade comprising Raf, mitogen-activated protein kinase kinase (MEK) and extracellular signal-regulated kinase (ERK) is a therapeutic target in human cancers with deregulated Ras signalling, which includes tumours that have inactivated the Nf1 tumour suppressor. Nf1 encodes neurofibromin, a GTPase-activating protein that terminates Ras signalling by stimulating hydrolysis of Ras–GTP. We compared the effects of inhibitors of MEK in a myeloproliferative disorder (MPD) initiated by inactivating Nf1 in mouse bone marrow and in acute myeloid leukaemias (AMLs) in which cooperating mutations were induced by retroviral insertional mutagenesis. Here we show that MEK inhibitors are ineffective in MPD, but induce objective regression of many Nf1-deficient AMLs. Drug resistance developed because of outgrowth of AML clones that were present before treatment. We cloned clone-specific retroviral integrations to identify candidate resistance genes including Rasgrp1, Rasgrp4 and Mapk14, which encodes p38α. Functional analysis implicated increased RasGRP1 levels and reduced p38 kinase activity in resistance to MEK inhibitors. This approach represents a robust strategy for identifying genes and pathways that modulate how primary cancer cells respond to targeted therapeutics and for probing mechanisms of de novo and acquired resistance.


Clinical Cancer Research | 2014

Phase II Study of the Oral MEK Inhibitor Selumetinib in Advanced Acute Myelogenous Leukemia: A University of Chicago Phase II Consortium Trial

Nitin Jain; Emily Curran; Neil M. Iyengar; Ernesto Diaz-Flores; Rangesh Kunnavakkam; Leslie Popplewell; Mark Kirschbaum; Theodore Karrison; Harry P. Erba; Margaret Green; Xavier Poiré; Gregory Koval; Kevin Shannon; Poluru L. Reddy; Loren Joseph; Ehab Atallah; Philip Dy; Sachdev P. Thomas; Scott E. Smith; Austin Doyle; Walter M. Stadler; Richard A. Larson; Wendy Stock; Olatoyosi Odenike

Purpose: The clinical relevance of targeting the RAS/RAF/MEK/ERK pathway, activated in 70% to 80% of patients with acute myelogenous leukemia (AML), is unknown. Experimental Design: Selumetinib is an oral small-molecule inhibitor of MAP–ERK kinase (MEK)-1/2. Forty-seven patients with relapsed/refractory AML or 60 years old or more with untreated AML were enrolled on a phase II study. Patients were stratified by FLT3 ITD mutation status. The primary endpoint was response rate (complete, partial, and minor). Leukemia cells were analyzed for extracellular signal—regulated kinase (ERK) and mTOR phosphorylation. Results: Common drug-related toxicities were grade 1–2 diarrhea, fatigue, nausea, vomiting, and skin rash. In the FLT3 wild-type cohort, six of 36 (17%) patients had a response [one partial response, three minor responses, two unconfirmed minor responses (uMR)]. No patient with FLT3 ITD responded. NRAS and KRAS mutations were detected in 7% and 2% of patients, respectively. The sole patient with KRAS mutation had uMR with hematologic improvement in platelets. Baseline p-ERK activation was observed in 85% of patients analyzed but did not correlate with a response. A single-nucleotide polymorphism (SNP) rs3733542 in exon 18 of the KIT gene was detected in significantly higher number of patients with response/stable disease compared with nonresponders (60% vs. 23%; P = 0.027). Conclusions: Selumetinib is associated with modest single-agent antileukemic activity in advanced AML. However, given its favorable toxicity profile, combination with drugs that target other signaling pathways in AML should be considered. The potential association of SNP rs3733542 in exon 18 of the KIT gene with antileukemic activity of selumetinib is intriguing, but will require validation in larger trials. Clin Cancer Res; 20(2); 490–8. ©2013 AACR.


Nature Genetics | 2015

Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis

Zhen Zhao; Chi-Chao Chen; Cory D. Rillahan; Ronglai Shen; Thomas Kitzing; Megan E. McNerney; Ernesto Diaz-Flores; Johannes Zuber; Kevin Shannon; Michelle M. Le Beau; Mona S. Spector; Scott C. Kogan; Scott W. Lowe

RAS network activation is common in human cancers, and in acute myeloid leukemia (AML) this activation is achieved mainly through gain-of-function mutations in KRAS, NRAS or the receptor tyrosine kinase FLT3. We show that in mice, premalignant myeloid cells harboring a KrasG12D allele retained low levels of Ras signaling owing to negative feedback involving Spry4 that prevented transformation. In humans, SPRY4 is located on chromosome 5q, a region affected by large heterozygous deletions that are associated with aggressive disease in which gain-of-function mutations in the RAS pathway are rare. These 5q deletions often co-occur with chromosome 17 alterations involving the deletion of NF1 (another RAS negative regulator) and TP53. Accordingly, combined suppression of Spry4, Nf1 and p53 produces high levels of Ras signaling and drives AML in mice. Thus, SPRY4 is a tumor suppressor at 5q whose disruption contributes to a lethal AML subtype that appears to acquire RAS pathway activation through a loss of negative regulators.


Blood | 2017

Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia

Viktoras Frismantas; Maria Pamela Dobay; Anna Rinaldi; Joelle Tchinda; Samuel H. Dunn; Joachim B. Kunz; Paulina Richter-Pechanska; Blerim Marovca; Orrin Pail; Silvia Jenni; Ernesto Diaz-Flores; Bill H. Chang; Timothy J Brown; Robert H. Collins; Sebastian Uhrig; Gnana Prakash Balasubramanian; Obul R. Bandapalli; Salome Higi; Sabrina Eugster; Pamela Voegeli; Mauro Delorenzi; Gunnar Cario; Mignon L. Loh; Martin Schrappe; Martin Stanulla; Andreas E. Kulozik; Martina U. Muckenthaler; Vaskar Saha; Julie Irving; Roland Meisel

Drug sensitivity and resistance testing on diagnostic leukemia samples should provide important functional information to guide actionable target and biomarker discovery. We provide proof of concept data by profiling 60 drugs on 68 acute lymphoblastic leukemia (ALL) samples mostly from resistant disease in cocultures of bone marrow stromal cells. Patient-derived xenografts retained the original pattern of mutations found in the matched patient material. Stromal coculture did not prevent leukemia cell cycle activity, but a specific sensitivity profile to cell cycle-related drugs identified samples with higher cell proliferation both in vitro and in vivo as leukemia xenografts. In patients with refractory relapses, individual patterns of marked drug resistance and exceptional responses to new agents of immediate clinical relevance were detected. The BCL2-inhibitor venetoclax was highly active below 10 nM in B-cell precursor ALL (BCP-ALL) subsets, including MLL-AF4 and TCF3-HLF ALL, and in some T-cell ALLs (T-ALLs), predicting in vivo activity as a single agent and in combination with dexamethasone and vincristine. Unexpected sensitivity to dasatinib with half maximal inhibitory concentration values below 20 nM was detected in 2 independent T-ALL cohorts, which correlated with similar cytotoxic activity of the SRC inhibitor KX2-391 and inhibition of SRC phosphorylation. A patient with refractory T-ALL was treated with dasatinib on the basis of drug profiling information and achieved a 5-month remission. Thus, drug profiling captures disease-relevant features and unexpected sensitivity to relevant drugs, which warrants further exploration of this functional assay in the context of clinical trials to develop drug repurposing strategies for patients with urgent medical needs.


Blood | 2014

NRASG12V oncogene facilitates self-renewal in a murine model of acute myelogenous leukemia.

Zohar Sachs; Rebecca S. LaRue; Hanh T. Nguyen; Karen Sachs; Klara E. Noble; Nurul Azyan Mohd Hassan; Ernesto Diaz-Flores; Susan K. Rathe; Aaron L. Sarver; Sean C. Bendall; Ngoc Ha; Miechaleen D. Diers; Garry P. Nolan; Kevin Shannon; David A. Largaespada

Mutant RAS oncoproteins activate signaling molecules that drive oncogenesis in multiple human tumors including acute myelogenous leukemia (AML). However, the specific functions of these pathways in AML are unclear, thwarting the rational application of targeted therapeutics. To elucidate the downstream functions of activated NRAS in AML, we used a murine model that harbors Mll-AF9 and a tetracycline-repressible, activated NRAS (NRAS(G12V)). Using computational approaches to explore our gene-expression data sets, we found that NRAS(G12V) enforced the leukemia self-renewal gene-expression signature and was required to maintain an MLL-AF9- and Myb-dependent leukemia self-renewal gene-expression program. NRAS(G12V) was required for leukemia self-renewal independent of its effects on growth and survival. Analysis of the gene-expression patterns of leukemic subpopulations revealed that the NRAS(G12V)-mediated leukemia self-renewal signature is preferentially expressed in the leukemia stem cell-enriched subpopulation. In a multiplexed analysis of RAS-dependent signaling, Mac-1(Low) cells, which harbor leukemia stem cells, were preferentially sensitive to NRAS(G12V) withdrawal. NRAS(G12V) maintained leukemia self-renewal through mTOR and MEK pathway activation, implicating these pathways as potential targets for cancer stem cell-specific therapies. Together, these experimental results define a RAS oncogene-driven function that is critical for leukemia maintenance and represents a novel mechanism of oncogene addiction.


Science Signaling | 2013

PLC-γ and PI3K Link Cytokines to ERK Activation in Hematopoietic Cells with Normal and Oncogenic Kras

Ernesto Diaz-Flores; Hana Goldschmidt; Philippe Depeille; Victor Ng; Jon Akutagawa; Kimberly Krisman; Michael Crone; Michael R. Burgess; Olusegun Williams; Benjamin T. Houseman; Kevan M. Shokat; Deepak Sampath; Gideon Bollag; Jeroen P. Roose; Benjamin S. Braun; Kevin Shannon

Targeting signaling pathways upstream of oncogenic Ras may have therapeutic benefit in the treatment of leukemia. Target Upstream of Oncogenic Ras Members of the K-Ras family of small guanosine triphosphatases mediate signaling by cytokine and growth factor receptors to activate extracellular signal–regulated kinase (ERK), leading to cellular proliferation. Mutant K-Ras molecules, for example, K-RasG12D, accumulate in the active form and are associated with certain leukemias. Through flow cytometric analysis of phosphorylated proteins in mouse bone marrow cells, Diaz-Flores et al. showed that ERK activation downstream of K-RasG12D required cytokine receptor–dependent activation of phospholipase C–γ (PLC-γ) and phosphoinositide 3-kinase (PI3K) signaling. Treatment of mice with a clinically available PI3K inhibitor reduced ERK activation in cells expressing K-RasG12D, suggesting that molecules upstream of oncogenic Ras may provide therapeutic targets against some cancers. Oncogenic K-Ras proteins, such as K-RasG12D, accumulate in the active, guanosine triphosphate (GTP)–bound conformation and stimulate signaling through effector kinases. The presence of the K-RasG12D oncoprotein at a similar abundance to that of endogenous wild-type K-Ras results in only minimal phosphorylation and activation of the canonical Raf–mitogen-activated or extracellular signal–regulated protein kinase kinase (MEK)–extracellular signal–regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)–Akt–mammalian target of rapamycin (mTOR) signaling cascades in primary hematopoietic cells, and these pathways remain dependent on growth factors for efficient activation. We showed that phospholipase C–γ (PLC-γ), PI3K, and their generated second messengers link activated cytokine receptors to Ras and ERK signaling in differentiated bone marrow cells and in a cell population enriched for leukemia stem cells. Cells expressing endogenous oncogenic K-RasG12D remained dependent on the second messenger diacylglycerol for the efficient activation of Ras-ERK signaling. These data raise the unexpected possibility of therapeutically targeting proteins that function upstream of oncogenic Ras in cancer.


Haematologica | 2016

Stat5 is critical for the development and maintenance of myeloproliferative neoplasm initiated by Nf1 deficiency

Zohar Sachs; Raha A. Been; Krista J. DeCoursin; Hanh T. Nguyen; Nurul Azyan Mohd Hassan; Klara E. Noble-Orcutt; Craig E. Eckfeldt; Emily J. Pomeroy; Ernesto Diaz-Flores; Jennifer L. Geurts; Miechaleen D. Diers; Diane E. Hasz; Kelly Morgan; Margaret L. MacMillan; Kevin Shannon; David A. Largaespada; Stephen M. Wiesner

Juvenile myelomonocytic leukemia is a rare myeloproliferative neoplasm characterized by hyperactive RAS signaling. Neurofibromin1 (encoded by the NF1 gene) is a negative regulator of RAS activation. Patients with neurofibromatosis type 1 harbor loss-of-function mutations in NF1 and have a 200- to 500-fold increased risk of juvenile myelomonocytic leukemia. Leukemia cells from patients with juvenile myelomonocytic leukemia display hypersensitivity to certain cytokines, such as granulocyte-macrophage colony-stimulating factor. The granulocyte-macrophage colony-stimulating factor receptor utilizes pre-associated JAK2 to initiate signals after ligand binding. JAK2 subsequently activates STAT5, among other downstream effectors. Although STAT5 is gaining recognition as an important mediator of growth factor signaling in myeloid leukemias, the contribution of STAT5 to the development of hyperactive RAS-initiated myeloproliferative disease has not been well described. In this study, we investigated the consequence of STAT5 attenuation via genetic and pharmacological approaches in Nf1-deficient murine models of juvenile myelomonocytic leukemia. We found that homozygous Stat5 deficiency extended the lifespan of Nf1-deficient mice and eliminated the development of myeloproliferative neoplasm associated with Nf1 gene loss. Likewise, we found that JAK inhibition with ruxolitinib attenuated myeloproliferative neoplasm in Nf1-deficient mice. Finally, we found that primary cells from a patient with KRAS-mutant juvenile myelomonocytic leukemia displayed reduced colony formation in response to JAK2 inhibition. Our findings establish a central role for STAT5 activation in the pathogenesis of juvenile myelomonocytic leukemia and suggest that targeting this pathway may be of clinical utility in these patients.

Collaboration


Dive into the Ernesto Diaz-Flores's collaboration.

Top Co-Authors

Avatar

Kevin Shannon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zohar Sachs

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Mignon L. Loh

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge