Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Estela Natacha Brandt Busanello is active.

Publication


Featured researches published by Estela Natacha Brandt Busanello.


Clinica Chimica Acta | 2009

Selective screening for organic acidemias by urine organic acid GC–MS analysis in Brazil: Fifteen-year experience

Moacir Wajner; Daniella de Moura Coelho; Rafaela Ingrassia; Anderson Büker de Oliveira; Estela Natacha Brandt Busanello; Kimiyo Raymond; Ricardo Flores Pires; Carolina Fischinger Moura de Souza; Roberto Giugliani; Carmen Regla Vargas

BACKGROUND The gas chromatography/mass spectrometry (GC/MS) method for organic acid analysis was established in developed countries since 1980s, but due to the small number of experienced clinical biochemists in this field and also the short availability of mass spectrometers scarce reports exist on the prevalence of organic acidemias (OAs) in developing countries like Brazil. METHODS During January 1994 to July 2008, we analyzed organic acids by GC/MS in urine specimens obtained from Brazilian children with clinical suspicion of metabolic diseases. RESULTS Two hundred and thirty four cases of disorders of organic acid metabolism, including 218 OAs (3.17%), were diagnosed among 6866 patients investigated. The most frequent disorders were primary lactic acidemia (57), methylmalonic acidemia (34), glutaric acidemia type I (33), propionic acidemia (18), 3-hydroxy-3-methylglutaric aciduria (17), L-2-hydroxyglutaric aciduria (9) and multiple carboxylase deficiency (9). Fourteen cases of mitochondrial fatty acid oxidation disorders, as well as 12 aminoacidopathies and 4 cases of vitamin B12 deficiency were also detected. Prompt treatment following diagnosis led to a better outcome in a considerable number of patients. CONCLUSION Detection of OAs in loco in developing countries is important despite the implied extra costs, since it allows rapid therapy in many cases with a significant reduction of morbidity and mortality and makes the physicians more aware of these pathologies.


Metabolic Brain Disease | 2009

Evidence that folic acid deficiency is a major determinant of hyperhomocysteinemia in Parkinson´s disease

Eliseu Felippe dos Santos; Estela Natacha Brandt Busanello; Anelise Miglioranza; Ângela Zanatta; Alethea Gatto Barchak; Carmen Regla Vargas; Jonas Alex Morales Saute; Charles Rosa; Maria Julia Machline Carrion; Daiane Piccolotto Carvalho Camargo; André Dalbem; Jaderson Costa da Costa; Sandro René Pinto de Sousa Miguel; Carlos Roberto de Mello Rieder; Moacir Wajner

In the present work we measured blood levels of total homocysteine (tHcy), vitamin B12 and folic acid in patients with Parkinson´s disease (PD) and in age-matched controls and searched for possible associations between these levels with smoking, alcohol consumption, L-DOPA treatment and disease duration in PD patients. We initially observed that plasma tHcy levels were increased by around 30 % in patients affected by PD compared to controls. Linear correlation, multiple regression and comparative analyses revealed that the major determinant of the increased plasma concentrations of tHcy in PD patients was folic acid deficiency, whereas in controls tHcy levels were mainly determined by plasma vitamin B12 concentrations. We also observed that alcohol consumption, gender and L-DOPA treatment did not significantly alter plasma tHcy, folic acid and vitamin B12 levels in parkinsonians. Furthermore, disease duration was positively associated with tHcy levels and smoking was linked with a deficit of folic acid in PD patients. Considering the potential synergistic deleterious effects of Hcy increase and folate deficiency on the central nervous system, we postulate that folic acid should be supplemented to patients affected by PD in order to normalize blood Hcy and folate levels, therefore potentially avoiding these risk factors for neurologic deterioration in this disorder.


Brain Research | 2009

Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain

Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Anelise Miotti Tonin; Carolina Maso Viegas; Estela Natacha Brandt Busanello; Alana Pimentel Moura; Ângela Zanatta; Fábio Klamt; Moacir Wajner

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.


Neurochemistry International | 2009

Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain.

Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Alana Pimentel Moura; Estela Natacha Brandt Busanello; Anelise Miotti Tonin; Carlos Severo Dutra-Filho; Moacir Wajner

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent disorder of fatty acid oxidation with a similar prevalence to that of phenylketonuria. Affected patients present tissue accumulation of the medium-chain fatty acids octanoate (OA), decanoate (DA) and cis-4-decenoate. Clinical presentation is characterized by neurological symptoms, such as convulsions and lethargy that may develop into coma and sudden death. The aim of the present work was to investigate the in vitro effect of OA and DA, the metabolites that predominantly accumulate in MCADD, on oxidative stress parameters in rat cerebral cortex homogenates. It was first verified that both DA and OA significantly increased chemiluminescence and thiobarbituric acid-reactive species levels (lipoperoxidation) and decreased the non-enzymatic antioxidant defenses, measured by the decreased total antioxidant capacity. DA also enhanced carbonyl content and oxidation of sulfhydryl groups (protein damage) and decreased reduced glutathione (GSH) levels. We also verified that DA-induced GSH decrease and sulfhydryl oxidation were not observed when cytosolic preparations (membrane-free supernatants) were used, suggesting a mitochondrial mechanism for these actions. Our present data show that the medium-chain fatty acids DA and OA that most accumulate in MCADD cause oxidative stress in rat brain. It is therefore presumed that this pathomechanism may be involved in the pathophysiology of the neurologic symptoms manifested by patients affected by MCADD.


Neurochemistry International | 2010

Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.

Anelise Miotti Tonin; Mateus Grings; Estela Natacha Brandt Busanello; Alana Pimentel Moura; Gustavo da Costa Ferreira; Carolina Maso Viegas; Carolina Gonçalves Fernandes; Patrícia Fernanda Schuck; Moacir Wajner

Accumulation of long-chain 3-hydroxy fatty acids is the biochemical hallmark of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. These disorders are clinically characterized by neurological symptoms, such as convulsions and lethargy, as well as by cardiomyopathy and muscle weakness. In the present work we investigated the in vitro effect of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in these disorders, on important oxidative stress parameters in cerebral cortex of young rats in the hope to clarify the mechanisms leading to the brain damage found in patients affected by these disorders. It was first verified that these compounds significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased and sulfhydryl content decreased by 3HTA and 3HPA, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, without affecting nitrate and nitrite production. Finally, we observed that the addition of the antioxidants and free radical scavengers trolox and deferoxamine (DFO) was able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by 3HTA. Our present data showing that 3HDA, 3HTA and 3HPA elicit oxidative stress in rat brain indicate that oxidative damage may represent an important pathomechanism involved in the neurologic symptoms manifested by patients affected by LCHAD and MTP deficiencies.


Journal of Bioenergetics and Biomembranes | 2013

Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria

Anelise Miotti Tonin; Alexandre Umpierrez Amaral; Estela Natacha Brandt Busanello; Mateus Grings; Roger F. Castilho; Moacir Wajner

Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.


Brain Research | 2010

In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.

Estela Natacha Brandt Busanello; Carolina Maso Viegas; Alana Pimentel Moura; Anelise Miotti Tonin; Mateus Grings; Carmen Regla Vargas; Moacir Wajner

Phytanic acid (Phyt) tissue concentrations are increased in Refsum disease and other peroxisomal disorders characterized by neurologic damage and brain abnormalities. The present work investigated the in vitro effects of Phyt, at concentrations found in these peroxisomal disorders, on important parameters of energy metabolism in brain cortex of young rats. The parameters analyzed were CO(2) production from labeled acetate and glucose, the activities of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase, as well as of the respiratory chain complexes I-IV, creatine kinase and Na(+),K(+)-ATPase. Our results show that Phyt did not alter citric acid cycle enzyme activities, or CO(2) production from acetate, reflecting no impairment of the functionality of the citric acid cycle. In contrast, respiratory chain activities were reduced at complexes I, II, I-III, II-III and IV. Membrane synaptical Na(+),K(+)-ATPase activity was also reduced by Phyt, with no alteration of creatine kinase activity. Considering the importance of the electron flow through the respiratory chain for brain energy metabolism (oxidative phosphorylation) and of Na(+),K(+)-ATPase activity for maintaining membrane potential necessary for neurotransmission, the data indicate that Phyt impairs brain bioenergetics at the level of energy formation, as well as neurotransmission. It is presumed that Phyt-induced impairment of these important systems may be involved at least in part in the neurological damage found in patients affected by disorders in which brain Phyt concentrations are increased.


Clinical Biochemistry | 2009

Amino acids levels and lipid peroxidation in maple syrup urine disease patients.

Alethea Gatto Barschak; Angela Sitta; Marion Deon; Estela Natacha Brandt Busanello; Daniella de Moura Coelho; Franciele Cipriani; Carlos Severo Dutra-Filho; Roberto Giugliani; Moacir Wajner; Carmen Regla Vargas

OBJECTIVE In the present study we correlated the amino acids, branched-chain alpha-keto acids and alpha-hydroxy acids levels with the thiobarbituric acid-reactive species (TBARS) measurement, a lipid peroxidation parameter, in plasma from treated MSUD patients in order to examine whether these accumulated metabolites could be associated to the oxidative stress present in MSUD. DESIGN AND METHODS TBARS, amino acids, branched-chain alpha-keto acids and alpha-hydroxy acids concentrations were measured in plasma samples from treated MSUD patients. RESULTS We verified that plasma TBARS was increased, whereas tryptophan and methionine concentrations were significantly reduced. Furthermore TBARS measurement was inversely correlated to methionine and tryptophan levels. CONCLUSIONS Considering that methionine and tryptophan have antioxidant activities, the data suggest that the imbalance of these amino acids may be involved with lipid peroxidation in MSUD.


Life Sciences | 2010

Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain

Anelise Miotti Tonin; Gustavo da Costa Ferreira; Mateus Grings; Carolina Maso Viegas; Estela Natacha Brandt Busanello; Alexandre Umpierrez Amaral; Ângela Zanatta; Patrícia Fernanda Schuck; Moacir Wajner

AIMS We investigated the in vitro effects of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in tissues of patients affected by mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies, on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. MAIN METHODS We measured the respiratory parameters state 4, state 3, respiratory control ratio (RCR) and ADP/O ratio by the rate of oxygen consumption, as well as the mitochondrial membrane potential and the matrix NAD(P)H levels in the presence of the fatty acids. KEY FINDINGS We found that 3HDA, 3HTA and 3HPA markedly increased state 4 respiration and diminished the RCR using glutamate plus malate or succinate as substrates. 3HTA and 3HPA also diminished the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, 3HTA decreased state 3 respiration using glutamate/malate, but not pyruvate/malate or succinate as substrates. Our data indicate that the long-chain 3-hydroxy fatty acids that accumulate in LCHAD/MTP deficiencies act as uncouplers of oxidative phosphorylation, while 3HTA also behaves as a metabolic inhibitor. SIGNIFICANCE It is presumed that impairment of brain energy homeostasis caused by these endogenous accumulating compounds may contribute at least in part to the neuropathology of LCHAD/MTP deficiencies.


Molecular Genetics and Metabolism | 2012

Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.

Alexandre Umpierrez Amaral; Cristiane Cecatto; Bianca Seminotti; Ângela Zanatta; Carolina Gonçalves Fernandes; Estela Natacha Brandt Busanello; Luisa Macedo Braga; César Augusto João Ribeiro; Diogo O. Souza; Michael Woontner; David M. Koeller; Stephen I. Goodman; Moacir Wajner

Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I.

Collaboration


Dive into the Estela Natacha Brandt Busanello's collaboration.

Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Anelise Miotti Tonin

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carolina Maso Viegas

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alana Pimentel Moura

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Patrícia Fernanda Schuck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Carmen Regla Vargas

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ângela Zanatta

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Gustavo da Costa Ferreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mateus Grings

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Umpierrez Amaral

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge