Gustavo da Costa Ferreira
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Gustavo da Costa Ferreira.
Journal of Inherited Metabolic Disease | 2008
Sandra R. Mirandola; Daniela R. Melo; Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Moacir Wajner; Roger F. Castilho
SummaryThe effect of methylmalonate (MMA) on mitochondrial succinate oxidation has received great attention since it could present an important role in energy metabolism impairment in methylmalonic acidaemia. In the present work, we show that while millimolar concentrations of MMA inhibit succinate-supported oxygen consumption by isolated rat brain or muscle mitochondria, there is no effect when either a pool of NADH-linked substrates or N,N,N′,N′-tetramethyl-p-phenylendiamine (TMPD)/ascorbate were used as electron donors. Interestingly, the inhibitory effect of MMA, but not of malonate, on succinate-supported brain mitochondrial oxygen consumption was minimized when nonselective permeabilization of mitochondrial membranes was induced by alamethicin. In addition, only a slight inhibitory effect of MMA was observed on succinate-supported oxygen consumption by inside-out submitochondrial particles. In agreement with these observations, brain mitochondrial swelling experiments indicate that MMA is an important inhibitor of succinate transport by the dicarboxylate carrier. Under our experimental conditions, there was no evidence of malonate production in MMA-treated mitochondria. We conclude that MMA inhibits succinate-supported mitochondrial oxygen consumption by interfering with the uptake of this substrate. Although succinate generated outside the mitochondria is probably not a sig-nificant contributor to mitochondrial energy generation, the physiopathological implications of MMA-induced inhibition of substrate transport by the mitochondrial dicarboxylate carrier are discussed.
Neurochemical Research | 2008
César Augusto João Ribeiro; Ângela M. Sgaravatti; Rafael Borba Rosa; Patrícia Fernanda Schuck; Vanessa Grando; Anna Laura Schmidt; Gustavo da Costa Ferreira; Marcos Luiz Santos Perry; Carlos Severo Dutra-Filho; Moacir Wajner
In the present work we investigated the in vitro effect of the branched-chain amino acids (BCAA) accumulating in maple syrup urine disease (MSUD) on some parameters of energy metabolism in cerebral cortex of rats. 14CO2 production from [1-14C]acetate, [1-5-14C]citrate and [U-14C]glucose, as well as glucose uptake by the brain were evaluated by incubating cortical prisms from 30-day-old rats in the absence (controls) or presence of leucine (Leu), valine (Val) or isoleucine (Ile). All amino acids significantly reduced 14CO2 production by around 20–55%, in contrast to glucose utilization, which was significantly increased by up to 90%. Furthermore, Leu significantly inhibited the activity of the respiratory chain complex IV, whereas Val and Ile markedly inhibited complexes II–III, III and IV by up to 40%. We also observed that trolox (α-tocopherol) and creatine totally prevented the inhibitory effects provoked by the BCAA on the respiratory chain complex activities, suggesting that free radicals were involved in these effects. The results indicate that the major metabolites accumulating in MSUD disturb brain aerobic metabolism by compromising the citric acid cycle and the electron flow through the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.
International Journal of Developmental Neuroscience | 2006
Letícia Ferreira Pettenuzzo; Gustavo da Costa Ferreira; Anna Laura Schmidt; Carlos Severo Dutra-Filho; Angela Terezinha de Souza Wyse; Moacir Wajner
Methylmalonic acidemia is an inherited metabolic disorder biochemically characterized by tissue accumulation of methylmalonic acid (MMA) and clinically by progressive neurological deterioration and kidney failure, whose pathophysiology is so far poorly established. Previous studies have shown that MMA inhibits complex II of the respiratory chain in rat cerebral cortex, although no inhibition of complexes I–V was found in bovine heart. Therefore, in the present study we investigated the in vitro effect of 2.5 mM MMA on the activity of complexes I–III, II, II–III and IV in striatum, hippocampus, heart, liver and kidney homogenates from young rats. We observed that MMA caused a significant inhibition of complex II activity in striatum and hippocampus (15–20%) at low concentrations of succinate in the medium, but not in the peripheral tissues. We also verified that the inhibitory property of MMA only occurred after exposing brain homogenates for at least 10 min with the acid, suggesting that this inhibition was mediated by indirect mechanisms. Simultaneous preincubation with the nitric oxide synthase inhibitor Nω‐nitro‐l‐arginine methyl ester (l‐NAME) and catalase (CAT) plus superoxide dismutase (SOD) did not prevent MMA‐induced inhibition of complex II, suggesting that common reactive oxygen (superoxide, hydrogen peroxide and hydroxyl radical) and nitric (nitric oxide) species were not involved in this effect. In addition, complex II–III (20–35%) was also inhibited by MMA in all tissues tested, and complex I–III only in the kidney (53%) and liver (38%). In contrast, complex IV activity was not changed by MMA in all tissues studied. These results indicate that MMA differentially affects the activity of the respiratory chain pending on the tissues studied, being striatum and hippocampus more vulnerable to its effect. In case our in vitro data are confirmed in vivo in tissues from methylmalonic acidemic patients, it is feasible that that the present findings may be related to the pathophysiology of the tissue damage characteristic of these patients.
Brain Research | 2004
Denis Reis de Assis; Rita de Cassia Maria; Rafael Borba Rosa; Patrícia Fernanda Schuck; César Augusto João Ribeiro; Gustavo da Costa Ferreira; Carlos Severo Dutra-Filho; Angela Terezinha de Souza Wyse; Clovis Milton Duval Wannmacher; Marcos Luiz Santos Perry; Moacir Wajner
Patients affected by medium-chain acyl CoA dehydrogenase (MCAD) deficiency, a frequent inborn error of metabolism, suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. In the present study, we investigated the in vitro effect of the medium-chain fatty acids (MCFA), at concentrations varying from 0.01 to 3 mM, accumulating in MCAD deficiency on some parameters of energy metabolism in cerebral cortex of young rats. (14)CO(2) production from [U(14)] glucose, [1-(14)C] acetate and [1,5-(14)C] citrate was evaluated by incubating cerebral cortex homogenates from 30-day-old rats in the absence (controls) or presence of octanoic acid, decanoic acid or cis-4-decenoic acid. OA and DA significantly reduced (14)CO(2) production from acetate by around 30-40%, and from glucose by around 70%. DA significantly reduced (14)CO(2) production from citrate by around 40%, while OA did not affect this parameter. cDA inhibited (14)CO(2) production from all tested substrates by around 30-40%. The activities of the respiratory chain complexes and of creatine kinase were also tested in the presence of DA and cDA. Both metabolites significantly inhibited cytochrome c oxidase activity (by 30%) and complex II-III activity (DA, 25%; cDA, 80%). Furthermore, only cDA inhibited complex II activity (by 30%), while complex I-III and citrate synthase were not affected by these MCFA. On the other hand, only cDA reduced the activity of creatine kinase in total homogenates, as well as in mitochondrial and cytosolic fractions from cerebral cortex (by 50%). The data suggest that the major metabolites which accumulate in MCAD deficiency, with particular emphasis to cDA, compromise brain energy metabolism. We presume that these findings may contribute to the understanding of the pathophysiology of the neurological dysfunction of MCAD deficient patients.
Brain Research | 2009
Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Anelise Miotti Tonin; Carolina Maso Viegas; Estela Natacha Brandt Busanello; Alana Pimentel Moura; Ângela Zanatta; Fábio Klamt; Moacir Wajner
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.
International Journal of Developmental Neuroscience | 2007
Gustavo da Costa Ferreira; Anelise Miotti Tonin; Patrícia Fernanda Schuck; Carolina Maso Viegas; Paula Casagrande Ceolato; Alexandra Latini; Marcos Luiz Santos Perry; Angela Terezinha de Souza Wyse; Carlos Severo Dutra-Filho; Clovis Milton Duval Wannmacher; Carmen Regla Vargas; Moacir Wajner
Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl‐CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3‐hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3‐hydroxyglutaric acids or the mixture of glutaric plus 3‐hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and 14CO2 production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3‐hydroxyglutaric (1 mM) and quinolinic acids (0.1 μM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3‐hydroxyglutaric with quinolinic acids. In contrast, co‐incubation of glutaric plus 3‐hydroxyglutaric acids increased glucose utilization, decreased 14CO2 generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3‐hydroxyglutaric acids‐induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3‐hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.
Neurochemistry International | 2009
Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Alana Pimentel Moura; Estela Natacha Brandt Busanello; Anelise Miotti Tonin; Carlos Severo Dutra-Filho; Moacir Wajner
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent disorder of fatty acid oxidation with a similar prevalence to that of phenylketonuria. Affected patients present tissue accumulation of the medium-chain fatty acids octanoate (OA), decanoate (DA) and cis-4-decenoate. Clinical presentation is characterized by neurological symptoms, such as convulsions and lethargy that may develop into coma and sudden death. The aim of the present work was to investigate the in vitro effect of OA and DA, the metabolites that predominantly accumulate in MCADD, on oxidative stress parameters in rat cerebral cortex homogenates. It was first verified that both DA and OA significantly increased chemiluminescence and thiobarbituric acid-reactive species levels (lipoperoxidation) and decreased the non-enzymatic antioxidant defenses, measured by the decreased total antioxidant capacity. DA also enhanced carbonyl content and oxidation of sulfhydryl groups (protein damage) and decreased reduced glutathione (GSH) levels. We also verified that DA-induced GSH decrease and sulfhydryl oxidation were not observed when cytosolic preparations (membrane-free supernatants) were used, suggesting a mitochondrial mechanism for these actions. Our present data show that the medium-chain fatty acids DA and OA that most accumulate in MCADD cause oxidative stress in rat brain. It is therefore presumed that this pathomechanism may be involved in the pathophysiology of the neurologic symptoms manifested by patients affected by MCADD.
Neurochemistry International | 2010
Anelise Miotti Tonin; Mateus Grings; Estela Natacha Brandt Busanello; Alana Pimentel Moura; Gustavo da Costa Ferreira; Carolina Maso Viegas; Carolina Gonçalves Fernandes; Patrícia Fernanda Schuck; Moacir Wajner
Accumulation of long-chain 3-hydroxy fatty acids is the biochemical hallmark of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. These disorders are clinically characterized by neurological symptoms, such as convulsions and lethargy, as well as by cardiomyopathy and muscle weakness. In the present work we investigated the in vitro effect of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in these disorders, on important oxidative stress parameters in cerebral cortex of young rats in the hope to clarify the mechanisms leading to the brain damage found in patients affected by these disorders. It was first verified that these compounds significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased and sulfhydryl content decreased by 3HTA and 3HPA, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, without affecting nitrate and nitrite production. Finally, we observed that the addition of the antioxidants and free radical scavengers trolox and deferoxamine (DFO) was able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by 3HTA. Our present data showing that 3HDA, 3HTA and 3HPA elicit oxidative stress in rat brain indicate that oxidative damage may represent an important pathomechanism involved in the neurologic symptoms manifested by patients affected by LCHAD and MTP deficiencies.
Neuroscience Research | 2007
Patrícia Fernanda Schuck; Anelise Miotti Tonin; Gustavo da Costa Ferreira; Rafael Borba Rosa; Alexandra Latini; Fabrício Balestro; Marcos Luiz Santos Perry; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Moacir Wajner
Quinolinic acid (QA) is found at increased concentrations in brain of patients affected by various common neurodegenerative disorders, including Huntingtons and Alzheimers diseases. Considering that the neuropathology of these disorders has been recently attributed at least in part to energy deficit, in the present study we investigated the in vitro effect of QA (0.1-100 microM) on various parameters of energy metabolism, such as glucose uptake, (14)CO(2) production and lactate production, as well as on the activities of the respiratory chain complexes I-V, the citric acid cycle (CAC) enzymes, creatine kinase (CK), lactate dehydrogenase (LDH) and Na(+),K(+)-ATPase and finally the rate of oxygen consumption in brain of 30-day-old rats. We initially observed that QA significantly increased glucose uptake (55%), whereas (14)CO(2) generation from glucose, acetate and citrate was inhibited (up to 60%). Furthermore, QA-induced increase of brain glucose uptake was prevented by the NMDA receptor antagonist MK-801. Complex II activity was also inhibited (up to 35%) by QA, whereas the other activities of the respiratory chain complexes, CAC enzymes, CK and Na(+),K(+)-ATPase were not affected by the acid. Furthermore, inhibition of complex II activity was fully prevented by pre-incubating cortical homogenates with catalase plus superoxide dismutase, indicating that this effect was probably mediated by reactive oxygen species. In addition, lactate production was also not altered by QA, in contrast to the conversion of pyruvate to lactate catalyzed by LDH, which was significantly decreased (17%) by this neurotoxin. We also observed that QA did not change state III, state IV and the respiratory control ratio in the presence of glutamate/malate or succinate, suggesting that its effect on cellular respiration was rather weak. The data provide evidence that QA provokes a mild impairment of brain energy metabolism in vitro and does not support the view that the brain energy deficiency associated to certain neurodegenerative disorders could be solely endorsed to QA accumulation.
Journal of the Neurological Sciences | 2006
Marion Deon; Moacir Wajner; Lisana Reginini Sirtori; Douglas Boni Fitarelli; Daniella de Moura Coelho; Angela Sitta; Alethea Gatto Barschak; Gustavo da Costa Ferreira; Alexsandro Haeser; Roberto Giugliani; Carmen Regla Vargas
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder biochemically characterized by the accumulation of very long chain fatty acids (VLCFA), particularly hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)), in tissues and biological fluids. Although patients affected by this disorder predominantly present central and peripheral demyelination as well as adrenal insufficiency, the mechanisms underlying the brain damage in X-ALD are poorly known. The current treatment of X-ALD with glyceroltrioleate (C(18:1))/glyceroltrierucate (C(22:1)) (Lorenzos oil, LO) combined with a VLCFA-poor diet normalizes VLCFA concentrations, but the neurological symptoms persist or even progress in symptomatic patients. Considering that free radical generation is involved in various neurodegenerative disorders and that in a previous study we showed evidence that oxidative stress is probably involved in the pathophysiology of X-ALD symptomatic patients, in the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid reactive species (TBA-RS) and total antioxidant reactivity (TAR) in plasma, as well as the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) in erythrocytes from symptomatic and asymptomatic X-ALD patients and verified whether LO treatment and a VLCFA restricted diet could change these parameters. We observed a significant increase of plasma TBA-RS in symptomatic and asymptomatic X-ALD patients, reflecting induction of lipid peroxidation even before the disease was manifested. In addition, LO treatment did not alter this profile. Furthermore, plasma TAR measurement of X-ALD patients was not different from that of controls. Similarly, the antioxidant enzyme activities CAT, SOD and GPx were not altered in erythrocyte from X-ALD patients as compared to controls. We also examined the in vitro effects of hexacosanoic acid (C(26:0)) and tetracosanoic acid (C(24:0)) alone or combined with oleic (C(18:1))/erucic (C(22:1)) acids on various oxidative stress parameters in cerebral cortex of young rats, namely chemiluminescence, TBA-RS, TAR, CAT, SOD and GPx in order to investigate whether those fatty acids were able to induce oxidative stress. We found that there was a significant increase of TBARS and of chemiluminescence in rat cerebral cortex exposed to C(26:0)/C(24:0), and that the addition of C(18:1)and C(22:1) to the assays did not prevent this effect. Furthermore, TAR measurement was not altered by C(26:0) and C(24:0) acids in rat cerebral cortex. Taken together, our results indicate that lipid peroxidation occurs in X-ALD and that LO treatment does not attenuate or prevent free radical generation in these patients. Therefore, it may be presumed that antioxidants should be considered as an adjuvant therapy for X-ALD patients.
Collaboration
Dive into the Gustavo da Costa Ferreira's collaboration.
Angela Terezinha de Souza Wyse
Universidade Federal do Rio Grande do Sul
View shared research outputsEstela Natacha Brandt Busanello
Universidade Federal do Rio Grande do Sul
View shared research outputs