Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Anelise Miotti Tonin is active.

Publication


Featured researches published by Anelise Miotti Tonin.


Brain Research | 2009

Evidence that the major metabolites accumulating in medium-chain acyl-CoA dehydrogenase deficiency disturb mitochondrial energy homeostasis in rat brain

Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Anelise Miotti Tonin; Carolina Maso Viegas; Estela Natacha Brandt Busanello; Alana Pimentel Moura; Ângela Zanatta; Fábio Klamt; Moacir Wajner

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is an inherited metabolic disorder of fatty acid oxidation in which the affected patients predominantly present high levels of octanoic (OA) and decanoic (DA) acids and their glycine and carnitine by-products in tissues and body fluids. It is clinically characterized by episodic encephalopathic crises with coma and seizures, as well as by progressive neurological involvement, whose pathophysiology is poorly known. In the present work, we investigated the in vitro effects of OA and DA on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. We found that OA and DA markedly increased state 4 respiration and diminished state 3 respiration as well as the respiratory control ratio, the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, DA-elicited increase in oxygen consumption in state 4 respiration was partially prevented by atractyloside, indicating the involvement of the adenine nucleotide translocator. OA and DA also reduced ADP/O ratio, CCCP-stimulated respiration and the activities of respiratory chain complexes. The data indicate that the major accumulating fatty acids in MCADD act as uncouplers of oxidative phosphorylation and as metabolic inhibitors. Furthermore, DA, but not OA, provoked a marked mitochondrial swelling and cytochrome c release from mitochondria, reflecting a permeabilization of the inner mitochondrial membrane. Taken together, these data suggest that OA and DA impair brain mitochondrial energy homeostasis that could underlie at least in part the neuropathology of MCADD.


International Journal of Developmental Neuroscience | 2007

Evidence for a synergistic action of glutaric and 3-hydroxyglutaric acids disturbing rat brain energy metabolism

Gustavo da Costa Ferreira; Anelise Miotti Tonin; Patrícia Fernanda Schuck; Carolina Maso Viegas; Paula Casagrande Ceolato; Alexandra Latini; Marcos Luiz Santos Perry; Angela Terezinha de Souza Wyse; Carlos Severo Dutra-Filho; Clovis Milton Duval Wannmacher; Carmen Regla Vargas; Moacir Wajner

Glutaric acidemia type I is an inherited metabolic disorder caused by a severe deficiency of the mitochondrial glutaryl‐CoA dehydrogenase activity leading to accumulation of predominantly glutaric and 3‐hydroxyglutaric acids in the brain tissue of the affected patients. Considering that a toxic role was recently postulated for quinolinic acid in the neuropathology of glutaric acidemia type I, in the present work we investigated whether the combination of quinolinic acid with glutaric or 3‐hydroxyglutaric acids or the mixture of glutaric plus 3‐hydroxyglutaric acids could alter brain energy metabolism. The parameters evaluated in cerebral cortex from young rats were glucose utilization, lactate formation and 14CO2 production from labeled glucose and acetate, as well as the activities of pyruvate dehydrogenase and creatine kinase. We first observed that glutaric (5 mM), 3‐hydroxyglutaric (1 mM) and quinolinic acids (0.1 μM) per se did not alter these parameters. Similarly, no change of these parameters occurred when combining glutaric with quinolinic acids or 3‐hydroxyglutaric with quinolinic acids. In contrast, co‐incubation of glutaric plus 3‐hydroxyglutaric acids increased glucose utilization, decreased 14CO2 generation from glucose, inhibited pyruvate dehydrogenase activity as well as total and mitochondrial creatine kinase activities. The glutaric plus 3‐hydroxyglutaric acids‐induced inhibitory effects on creatine kinase were prevented by the antioxidants glutathione and catalase plus superoxide dismutase, indicating the participation of reactive oxygen species. Our data indicate a synergic action of glutaric and 3‐hydroxyglutaric acids disturbing energy metabolism in cerebral cortex of young rats.


Neurochemistry International | 2009

Medium-chain fatty acids accumulating in MCAD deficiency elicit lipid and protein oxidative damage and decrease non-enzymatic antioxidant defenses in rat brain.

Patrícia Fernanda Schuck; Gustavo da Costa Ferreira; Alana Pimentel Moura; Estela Natacha Brandt Busanello; Anelise Miotti Tonin; Carlos Severo Dutra-Filho; Moacir Wajner

Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most frequent disorder of fatty acid oxidation with a similar prevalence to that of phenylketonuria. Affected patients present tissue accumulation of the medium-chain fatty acids octanoate (OA), decanoate (DA) and cis-4-decenoate. Clinical presentation is characterized by neurological symptoms, such as convulsions and lethargy that may develop into coma and sudden death. The aim of the present work was to investigate the in vitro effect of OA and DA, the metabolites that predominantly accumulate in MCADD, on oxidative stress parameters in rat cerebral cortex homogenates. It was first verified that both DA and OA significantly increased chemiluminescence and thiobarbituric acid-reactive species levels (lipoperoxidation) and decreased the non-enzymatic antioxidant defenses, measured by the decreased total antioxidant capacity. DA also enhanced carbonyl content and oxidation of sulfhydryl groups (protein damage) and decreased reduced glutathione (GSH) levels. We also verified that DA-induced GSH decrease and sulfhydryl oxidation were not observed when cytosolic preparations (membrane-free supernatants) were used, suggesting a mitochondrial mechanism for these actions. Our present data show that the medium-chain fatty acids DA and OA that most accumulate in MCADD cause oxidative stress in rat brain. It is therefore presumed that this pathomechanism may be involved in the pathophysiology of the neurologic symptoms manifested by patients affected by MCADD.


Neurochemistry International | 2010

Long-chain 3-hydroxy fatty acids accumulating in LCHAD and MTP deficiencies induce oxidative stress in rat brain.

Anelise Miotti Tonin; Mateus Grings; Estela Natacha Brandt Busanello; Alana Pimentel Moura; Gustavo da Costa Ferreira; Carolina Maso Viegas; Carolina Gonçalves Fernandes; Patrícia Fernanda Schuck; Moacir Wajner

Accumulation of long-chain 3-hydroxy fatty acids is the biochemical hallmark of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) and mitochondrial trifunctional protein (MTP) deficiencies. These disorders are clinically characterized by neurological symptoms, such as convulsions and lethargy, as well as by cardiomyopathy and muscle weakness. In the present work we investigated the in vitro effect of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in these disorders, on important oxidative stress parameters in cerebral cortex of young rats in the hope to clarify the mechanisms leading to the brain damage found in patients affected by these disorders. It was first verified that these compounds significantly induced lipid peroxidation, as determined by increased thiobarbituric acid-reactive substances levels. In addition, carbonyl formation was significantly increased and sulfhydryl content decreased by 3HTA and 3HPA, which indicates that these fatty acids elicit protein oxidative damage. 3HTA and 3HPA also diminished the reduced glutathione (GSH) levels, without affecting nitrate and nitrite production. Finally, we observed that the addition of the antioxidants and free radical scavengers trolox and deferoxamine (DFO) was able to partially prevent lipid oxidative damage, whereas DFO fully prevented the reduction on GSH levels induced by 3HTA. Our present data showing that 3HDA, 3HTA and 3HPA elicit oxidative stress in rat brain indicate that oxidative damage may represent an important pathomechanism involved in the neurologic symptoms manifested by patients affected by LCHAD and MTP deficiencies.


Neuroscience Research | 2007

In vitro effect of quinolinic acid on energy metabolism in brain of young rats

Patrícia Fernanda Schuck; Anelise Miotti Tonin; Gustavo da Costa Ferreira; Rafael Borba Rosa; Alexandra Latini; Fabrício Balestro; Marcos Luiz Santos Perry; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Moacir Wajner

Quinolinic acid (QA) is found at increased concentrations in brain of patients affected by various common neurodegenerative disorders, including Huntingtons and Alzheimers diseases. Considering that the neuropathology of these disorders has been recently attributed at least in part to energy deficit, in the present study we investigated the in vitro effect of QA (0.1-100 microM) on various parameters of energy metabolism, such as glucose uptake, (14)CO(2) production and lactate production, as well as on the activities of the respiratory chain complexes I-V, the citric acid cycle (CAC) enzymes, creatine kinase (CK), lactate dehydrogenase (LDH) and Na(+),K(+)-ATPase and finally the rate of oxygen consumption in brain of 30-day-old rats. We initially observed that QA significantly increased glucose uptake (55%), whereas (14)CO(2) generation from glucose, acetate and citrate was inhibited (up to 60%). Furthermore, QA-induced increase of brain glucose uptake was prevented by the NMDA receptor antagonist MK-801. Complex II activity was also inhibited (up to 35%) by QA, whereas the other activities of the respiratory chain complexes, CAC enzymes, CK and Na(+),K(+)-ATPase were not affected by the acid. Furthermore, inhibition of complex II activity was fully prevented by pre-incubating cortical homogenates with catalase plus superoxide dismutase, indicating that this effect was probably mediated by reactive oxygen species. In addition, lactate production was also not altered by QA, in contrast to the conversion of pyruvate to lactate catalyzed by LDH, which was significantly decreased (17%) by this neurotoxin. We also observed that QA did not change state III, state IV and the respiratory control ratio in the presence of glutamate/malate or succinate, suggesting that its effect on cellular respiration was rather weak. The data provide evidence that QA provokes a mild impairment of brain energy metabolism in vitro and does not support the view that the brain energy deficiency associated to certain neurodegenerative disorders could be solely endorsed to QA accumulation.


Journal of Bioenergetics and Biomembranes | 2013

Long-chain 3-hydroxy fatty acids accumulating in long-chain 3-hydroxyacyl-CoA dehydrogenase and mitochondrial trifunctional protein deficiencies uncouple oxidative phosphorylation in heart mitochondria

Anelise Miotti Tonin; Alexandre Umpierrez Amaral; Estela Natacha Brandt Busanello; Mateus Grings; Roger F. Castilho; Moacir Wajner

Cardiomyopathy is a common clinical feature of some inherited disorders of mitochondrial fatty acid β-oxidation including mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies. Since individuals affected by these disorders present tissue accumulation of various fatty acids, including long-chain 3-hydroxy fatty acids, in the present study we investigated the effect of 3-hydroxydecanoic (3 HDCA), 3-hydroxydodecanoic (3 HDDA), 3-hydroxytetradecanoic (3 HTA) and 3-hydroxypalmitic (3 HPA) acids on mitochondrial oxidative metabolism, estimated by oximetry, NAD(P)H content, hydrogen peroxide production, membrane potential (ΔΨ) and swelling in rat heart mitochondrial preparations. We observed that 3 HTA and 3 HPA increased resting respiration and diminished the respiratory control and ADP/O ratios using glutamate/malate or succinate as substrates. Furthermore, 3 HDDA, 3 HTA and 3 HPA decreased ΔΨ, the matrix NAD(P)H pool and hydrogen peroxide production. These data indicate that these fatty acids behave as uncouplers of oxidative phosphorylation. We also verified that 3 HTA-induced uncoupling-effect was not mediated by the adenine nucleotide translocator and that this fatty acid induced the mitochondrial permeability transition pore opening in calcium-loaded organelles since cyclosporin A prevented the reduction of mitochondrial ΔΨ and swelling provoked by 3 HTA. The present data indicate that major 3-hydroxylated fatty acids accumulating in MTP and LCHAD deficiencies behave as strong uncouplers of oxidative phosphorylation potentially impairing heart energy homeostasis.


Brain Research | 2010

In vitro evidence that phytanic acid compromises Na(+),K(+)-ATPase activity and the electron flow through the respiratory chain in brain cortex from young rats.

Estela Natacha Brandt Busanello; Carolina Maso Viegas; Alana Pimentel Moura; Anelise Miotti Tonin; Mateus Grings; Carmen Regla Vargas; Moacir Wajner

Phytanic acid (Phyt) tissue concentrations are increased in Refsum disease and other peroxisomal disorders characterized by neurologic damage and brain abnormalities. The present work investigated the in vitro effects of Phyt, at concentrations found in these peroxisomal disorders, on important parameters of energy metabolism in brain cortex of young rats. The parameters analyzed were CO(2) production from labeled acetate and glucose, the activities of the citric acid cycle enzymes citrate synthase, aconitase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, succinate dehydrogenase, fumarase and malate dehydrogenase, as well as of the respiratory chain complexes I-IV, creatine kinase and Na(+),K(+)-ATPase. Our results show that Phyt did not alter citric acid cycle enzyme activities, or CO(2) production from acetate, reflecting no impairment of the functionality of the citric acid cycle. In contrast, respiratory chain activities were reduced at complexes I, II, I-III, II-III and IV. Membrane synaptical Na(+),K(+)-ATPase activity was also reduced by Phyt, with no alteration of creatine kinase activity. Considering the importance of the electron flow through the respiratory chain for brain energy metabolism (oxidative phosphorylation) and of Na(+),K(+)-ATPase activity for maintaining membrane potential necessary for neurotransmission, the data indicate that Phyt impairs brain bioenergetics at the level of energy formation, as well as neurotransmission. It is presumed that Phyt-induced impairment of these important systems may be involved at least in part in the neurological damage found in patients affected by disorders in which brain Phyt concentrations are increased.


International Journal of Developmental Neuroscience | 2008

Lysine induces lipid and protein damage and decreases reduced glutathione concentrations in brain of young rats.

Bianca Seminotti; Guilhian Leipnitz; Alexandre Umpierrez Amaral; Carolina Gonçalves Fernandes; Lucila de Bortoli da Silva; Anelise Miotti Tonin; Carmen Regla Vargas; Moacir Wajner

The present work investigated the in vitro effects of lysine on important parameters of oxidative stress in cerebral cortex of young rats. Our results show that lysine significantly induced lipid peroxidation, as determined by increase of thiobarbituric acid‐reactive substances and chemiluminescence levels, as well as protein oxidative damage since carbonyl formation and sulfhydryl oxidation were enhanced by this amino acid. Furthermore, the addition of free radical scavengers significantly prevented lysine‐induced lipid oxidative damage, suggesting that free radicals were involved in this effect. Lysine also significantly diminished glutathione levels in cortical supernatants, decreasing, therefore, the major brain antioxidant defense. Finally, lysine markedly oxidized a glutathione commercial solution in a medium devoid of brain supernatants, indicating that it behaved as a direct acting oxidant. The present data indicate that lysine induces oxidative stress in cerebral cortex of young rats. Therefore, it is presumed that this pathomechanism may be involved at least in part in the neurological damage found in patients affected by disorders with hyperlysinemia.


Life Sciences | 2010

Disturbance of mitochondrial energy homeostasis caused by the metabolites accumulating in LCHAD and MTP deficiencies in rat brain

Anelise Miotti Tonin; Gustavo da Costa Ferreira; Mateus Grings; Carolina Maso Viegas; Estela Natacha Brandt Busanello; Alexandre Umpierrez Amaral; Ângela Zanatta; Patrícia Fernanda Schuck; Moacir Wajner

AIMS We investigated the in vitro effects of 3-hydroxydodecanoic (3HDA), 3-hydroxytetradecanoic (3HTA) and 3-hydroxypalmitic (3HPA) acids, which accumulate in tissues of patients affected by mitochondrial trifunctional protein (MTP) and isolated long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) deficiencies, on various parameters of energy homeostasis in mitochondrial preparations from brain of young rats. MAIN METHODS We measured the respiratory parameters state 4, state 3, respiratory control ratio (RCR) and ADP/O ratio by the rate of oxygen consumption, as well as the mitochondrial membrane potential and the matrix NAD(P)H levels in the presence of the fatty acids. KEY FINDINGS We found that 3HDA, 3HTA and 3HPA markedly increased state 4 respiration and diminished the RCR using glutamate plus malate or succinate as substrates. 3HTA and 3HPA also diminished the mitochondrial membrane potential and the matrix NAD(P)H levels. In addition, 3HTA decreased state 3 respiration using glutamate/malate, but not pyruvate/malate or succinate as substrates. Our data indicate that the long-chain 3-hydroxy fatty acids that accumulate in LCHAD/MTP deficiencies act as uncouplers of oxidative phosphorylation, while 3HTA also behaves as a metabolic inhibitor. SIGNIFICANCE It is presumed that impairment of brain energy homeostasis caused by these endogenous accumulating compounds may contribute at least in part to the neuropathology of LCHAD/MTP deficiencies.


Cellular and Molecular Neurobiology | 2007

Kynurenines Impair Energy Metabolism in Rat Cerebral Cortex

Patrícia Fernanda Schuck; Anelise Miotti Tonin; Gustavo da Costa Ferreira; Carolina Maso Viegas; Alexandra Latini; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Carlos Severo Dutra-Filho; Moacir Wajner

Growing evidence indicates that some metabolites derived from the kynurenine pathway, the major route of l-tryptophan catabolism, are involved in the neurotoxicity associated with several brain disorders, such as Huntington’s disease, Parkinson’s disease and Alzheimer’s disease, as well as in glutaryl-CoA dehydrogenase deficiency (GAI). Considering that the pathophysiology of the brain damage in these neurodegenerative disorders is not completely defined, in the present study, we investigated the in vitro effect of l-kynurenine (Kyn), kynurenic acid (KA), 3-hydroxykynurenine (3HK), 3-hydroxyanthranilic acid (3HA) and anthranilic acid (AA) on some parameters of energy metabolism, namely glucose uptake, 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate, as well as on the activities of the respiratory chain complexes I–IV and Na+,K+-ATPase activity in cerebral cortex from 30-day-old rats. We observed that all compounds tested, except l-kynurenine, significantly increased glucose uptake and inhibited 14CO2 production from [U-14C] glucose, [1-14C] acetate and [1,5-14C] citrate. In addition, the activities of complexes I, II and IV of the respiratory chain were significantly inhibited by 3HK, while 3HA inhibited complexes I and II activities and AA inhibited complexes I–III activities. Moreover, Na+,K+-ATPase activity was not modified by these kynurenines. Taken together, our present data provide evidence that various kynurenine intermediates provoke impairment of brain energy metabolism.

Collaboration


Dive into the Anelise Miotti Tonin's collaboration.

Top Co-Authors

Avatar

Carolina Maso Viegas

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Patrícia Fernanda Schuck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Gustavo da Costa Ferreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Estela Natacha Brandt Busanello

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ângela Zanatta

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alana Pimentel Moura

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mateus Grings

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carmen Regla Vargas

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Angela Terezinha de Souza Wyse

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge