Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Etienne Hugues is active.

Publication


Featured researches published by Etienne Hugues.


NeuroImage | 2011

Role of local network oscillations in resting-state functional connectivity

Joana Cabral; Etienne Hugues; Olaf Sporns; Gustavo Deco

Spatio-temporally organized low-frequency fluctuations (<0.1 Hz), observed in BOLD fMRI signal during rest, suggest the existence of underlying network dynamics that emerge spontaneously from intrinsic brain processes. Furthermore, significant correlations between distinct anatomical regions-or functional connectivity (FC)-have led to the identification of several widely distributed resting-state networks (RSNs). This slow dynamics seems to be highly structured by anatomical connectivity but the mechanism behind it and its relationship with neural activity, particularly in the gamma frequency range, remains largely unknown. Indeed, direct measurements of neuronal activity have revealed similar large-scale correlations, particularly in slow power fluctuations of local field potential gamma frequency range oscillations. To address these questions, we investigated neural dynamics in a large-scale model of the human brains neural activity. A key ingredient of the model was a structural brain network defined by empirically derived long-range brain connectivity together with the corresponding conduction delays. A neural population, assumed to spontaneously oscillate in the gamma frequency range, was placed at each network node. When these oscillatory units are integrated in the network, they behave as weakly coupled oscillators. The time-delayed interaction between nodes is described by the Kuramoto model of phase oscillators, a biologically-based model of coupled oscillatory systems. For a realistic setting of axonal conduction speed, we show that time-delayed network interaction leads to the emergence of slow neural activity fluctuations, whose patterns correlate significantly with the empirically measured FC. The best agreement of the simulated FC with the empirically measured FC is found for a set of parameters where subsets of nodes tend to synchronize although the network is not globally synchronized. Inside such clusters, the simulated BOLD signal between nodes is found to be correlated, instantiating the empirically observed RSNs. Between clusters, patterns of positive and negative correlations are observed, as described in experimental studies. These results are found to be robust with respect to a biologically plausible range of model parameters. In conclusion, our model suggests how resting-state neural activity can originate from the interplay between the local neural dynamics and the large-scale structure of the brain.


The Journal of Neuroscience | 2004

Learning Modulation of Odor-Induced Oscillatory Responses in the Rat Olfactory Bulb: A Correlate of Odor Recognition?

Claire Martin; Rémi Gervais; Etienne Hugues; Belkacem Messaoudi; Nadine Ravel

In the first relay of information processing, the olfactory bulb (OB), odors are known to generate specific spatial patterns of activity. Recently, in freely behaving rats, we demonstrated that learning modulated oscillatory activity in local field potential (LFP), in response to odors, in both β (15-40 Hz) and γ (60-90 Hz) bands. The present study further characterized this odor-induced oscillatory activity with emphasis on its spatiotemporal distribution over the olfactory bulb and on its relationship with improvement of behavioral performances along training. For that purpose, LFPs were simultaneously recorded from four locations in the OB in freely moving rats performing an olfactory discrimination task. Electrodes were chronically implanted near relay neurons in the mitral cell body layer. Time-frequency methods were used to extract signal characteristics (amplitude, frequency, and time course) in the two frequency bands. Before training, odor presentation produced, on each site, a power decrease in γ oscillations and a weak but significant increase in power of β oscillations (∼25 Hz). When the training was achieved, these two phenomena were amplified. Interestingly, the β oscillatory response showed several significant differences between the anterodorsal and posteroventral regions of the OB. In addition, clear-cut β responses occurred in the signal as soon as animals began to master the task. As a whole, our results point to the possible functional importance of β oscillatory activity in the mammalian OB, particularly in the context of olfactory learning.


European Journal of Neuroscience | 2003

Olfactory learning modifies the expression of odour-induced oscillatory responses in the gamma (60-90 Hz) and beta (15-40 Hz) bands in the rat olfactory bulb

Nadine Ravel; Pascal Chabaud; Claire Martin; Valérie Gaveau; Etienne Hugues; Catherine Tallon-Baudry; Olivier Bertrand; Rémi Gervais

This study addressed the question of the possible functional relevance of two different oscillatory activities, beta and gamma (15–40 and 60–90 Hz, respectively) for perception and memory processes in olfactory areas of mammals. Local field potentials were recorded near relay olfactory bulb neurons while rats performed an olfactory discrimination task. Signals reflected the mass activity from this region and characteristics of oscillatory activities were used as an index of local synchrony. Beta and gamma oscillatory activities were quantified by time‐frequency methods before during and after odour sampling. In rats early in their training, olfactory sampling was associated with a significant decrease in power in the gamma band in parallel with a weak but significant increase in the beta band (centred on 27 Hz). Several days later, in well‐trained rats, the gamma oscillatory depression was significantly enhanced both in duration and amplitude. It appeared within the 500 ms time period preceding odour onset and was further reduced during the odour period. Concurrently the beta oscillatory response (now centred on 24 Hz) during odour sampling was amplified by a twofold factor. The beta band response was modulated according to the chemical nature of the stimuli and rats behavioural response. This study showed for the first time that odour sampling in behaving animals is associated with a clear shift in the olfactory bulb neuronal activity from a gamma to a beta oscillatory regime. Moreover, the data stress the importance of studying the odour‐induced beta activity and its relation to perception and memory.


The Journal of Neuroscience | 2009

Oscillations, Phase-of-Firing Coding, and Spike Timing-Dependent Plasticity: An Efficient Learning Scheme

Timothée Masquelier; Etienne Hugues; Gustavo Deco; Simon J. Thorpe

Recent experiments have established that information can be encoded in the spike times of neurons relative to the phase of a background oscillation in the local field potential—a phenomenon referred to as “phase-of-firing coding” (PoFC). These firing phase preferences could result from combining an oscillation in the input current with a stimulus-dependent static component that would produce the variations in preferred phase, but it remains unclear whether these phases are an epiphenomenon or really affect neuronal interactions—only then could they have a functional role. Here we show that PoFC has a major impact on downstream learning and decoding with the now well established spike timing-dependent plasticity (STDP). To be precise, we demonstrate with simulations how a single neuron equipped with STDP robustly detects a pattern of input currents automatically encoded in the phases of a subset of its afferents, and repeating at random intervals. Remarkably, learning is possible even when only a small fraction of the afferents (∼10%) exhibits PoFC. The ability of STDP to detect repeating patterns had been noted before in continuous activity, but it turns out that oscillations greatly facilitate learning. A benchmark with more conventional rate-based codes demonstrates the superiority of oscillations and PoFC for both STDP-based learning and the speed of decoding: the oscillation partially formats the input spike times, so that they mainly depend on the current input currents, and can be efficiently learned by STDP and then recognized in just one oscillation cycle. This suggests a major functional role for oscillatory brain activity that has been widely reported experimentally.


NeuroImage | 2012

Modeling the outcome of structural disconnection on resting-state functional connectivity.

Joana Cabral; Etienne Hugues; Morten L. Kringelbach; Gustavo Deco

A growing body of experimental evidence suggests that functional connectivity at rest is shaped by the underlying anatomical structure. Furthermore, the organizational properties of resting-state functional networks are thought to serve as the basis for an optimal cognitive integration. A disconnection at the structural level, as occurring in some brain diseases, would then lead to functional and presumably cognitive impairments. In this work, we propose a computational model to investigate the role of a structural disconnection (encompassing putative local/global and axonal/synaptic mechanisms) on the organizational properties of emergent functional networks. The brains spontaneous neural activity and the corresponding hemodynamic response were simulated using a large-scale network model, consisting of local neural populations coupled through white matter fibers. For a certain coupling strength, simulations reproduced healthy resting-state functional connectivity with graph properties in the range of the ones reported experimentally. When the structural connectivity is decreased, either globally or locally, the resultant simulated functional connectivity exhibited a network reorganization characterized by an increase in hierarchy, efficiency and robustness, a decrease in small-worldness and clustering and a narrower degree distribution, in the same way as recently reported for schizophrenia patients. Theoretical results indicate that most disconnection-related neuropathologies should induce the same qualitative changes in resting-state brain activity.


Autonomous Robots | 2006

A biomimetic robot for tracking specific odors in turbulent plumes

Dominique Martinez; Olivier Rochel; Etienne Hugues

Two basic tasks must be performed by an olfactory robot tracking a specific odor source: navigate in a turbulent odor plume and recognize an odor regardless of its concentration. For these two tasks, we propose simple biologically inspired strategies, well suited for building dedicated circuits and for on-board implementation on real robots. The odor recognition system is based on a spiking neural network using a synchronization coding scheme. The robot navigation system is based on the use of bilateral comparison between two spatially separated gas sensors arrays at either side of the robot. We propose binary or analog navigation laws depending on the nature of the available sensory information extracted from the plume structure (isolated odor patches or smoother concentration field).


PLOS Computational Biology | 2012

Neural Network Mechanisms Underlying Stimulus Driven Variability Reduction

Gustavo Deco; Etienne Hugues

It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neurons receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits.


PLOS Computational Biology | 2009

Specific entrainment of mitral cells during gamma oscillation in the rat olfactory bulb.

François David; Etienne Hugues; Tristan Cenier; Nicolas Fourcaud-Trocmé; Nathalie Buonviso

Local field potential (LFP) oscillations are often accompanied by synchronization of activity within a widespread cerebral area. Thus, the LFP and neuronal coherence appear to be the result of a common mechanism that underlies neuronal assembly formation. We used the olfactory bulb as a model to investigate: (1) the extent to which unitary dynamics and LFP oscillations can be correlated and (2) the precision with which a model of the hypothesized underlying mechanisms can accurately explain the experimental data. For this purpose, we analyzed simultaneous recordings of mitral cell (MC) activity and LFPs in anesthetized and freely breathing rats in response to odorant stimulation. Spike trains were found to be phase-locked to the gamma oscillation at specific firing rates and to form odor-specific temporal patterns. The use of a conductance-based MC model driven by an approximately balanced excitatory-inhibitory input conductance and a relatively small inhibitory conductance that oscillated at the gamma frequency allowed us to provide one explanation of the experimental data via a mode-locking mechanism. This work sheds light on the way network and intrinsic MC properties participate in the locking of MCs to the gamma oscillation in a realistic physiological context and may result in a particular time-locked assembly. Finally, we discuss how a self-synchronization process with such entrainment properties can explain, under experimental conditions: (1) why the gamma bursts emerge transiently with a maximal amplitude position relative to the stimulus time course; (2) why the oscillations are prominent at a specific gamma frequency; and (3) why the oscillation amplitude depends on specific stimulus properties. We also discuss information processing and functional consequences derived from this mechanism.


PLOS Computational Biology | 2011

STDP Allows Fast Rate-Modulated Coding with Poisson- Like Spike Trains

Matthieu Gilson; Timothée Masquelier; Etienne Hugues

Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.


Frontiers in Human Neuroscience | 2011

The Role of Rhythmic Neural Synchronization in Rest and Task Conditions

Gustavo Deco; Andres Buehlmann; Timothée Masquelier; Etienne Hugues

Rhythmic neural synchronization is found throughout the brain during many different tasks and even at rest. Beyond their underlying mechanisms, the question of their role is still controversial. Modeling can bring insight on this difficult question. We review here our recent modeling results concerning this issue in different situations. During rest, we show how local rhythmic synchrony can induce a spatiotemporally organized spontaneous activity at the brain level. Then, we show how rhythmic synchrony decreases reaction time in attention and enhances the strength and speed of information transfer between different groups of neurons. Finally, we show that when rhythmic synchrony creates firing phases, the learning with spike timing-dependent plasticity of repeatedly presented input patterns is greatly enhanced.

Collaboration


Dive into the Etienne Hugues's collaboration.

Top Co-Authors

Avatar

Gustavo Deco

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominique Martinez

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Martin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Rémi Gervais

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge