Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vanessa Euthine is active.

Publication


Featured researches published by Vanessa Euthine.


Biochemical Journal | 2006

Insulin activates human sterol-regulatory-element-binding protein-1c (SREBP-1c) promoter through SRE motifs

Nicolas Dif; Vanessa Euthine; Estelle Gonnet; M. Laville; Hubert Vidal; Etienne Lefai

In the present study, we aimed to decipher the mechanisms involved in the transcriptional effect of insulin on the SREBP-1c specific promoter of the human srebf-1 gene. Using luciferase reporter gene constructs in HEK-293 cells (human embryonic kidney cells), we demonstrated that the full effect of insulin requires the presence of SREs (sterol response elements) in the proximal region of the promoter. Furthermore, insulin increases the binding of SREBP-1 (sterol-regulatory-element-binding protein-1) to this promoter region in chromatin immunoprecipitation assay. We also found that the nuclear receptors LXRs (liver X receptors) strongly activate SREBP-1c gene expression and identified the LXRE (LXR-response element) involved in this effect. However, our results suggested that these LXREs do not play a major role in the response to insulin. Finally, using expression vectors and adenoviruses allowing ectopic overexpressions of the human mature forms of SREBP-1a or SREBP-1c, we demonstrated the direct role of SREBP-1 in the control of SREBP-1c gene expression in human skeletal-muscle cells. Altogether, these results strongly suggest that the SREBP-1 transcription factors are the main mediators of insulin action on SREBP-1c expression in human tissues.


Cell Cycle | 2014

Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts during muscle cell differentiation

Alexis Forterre; Audrey Jalabert; Karim Chikh; Sandra Pesenti; Vanessa Euthine; Aurélie Granjon; Elizabeth Errazuriz; Etienne Lefai; Hubert Vidal; Sophie Rome

It has recently been established that exosomes can mediate intercellular cross-talk under normal and pathological conditions through the transfer of specific miRNAs. As muscle cells secrete exosomes, we addressed the question of whether skeletal muscle (SkM) exosomes contained specific miRNAs, and whether they could act as “endocrine signals” during myogenesis. We compared the miRNA repertoires found in exosomes released from C2C12 myoblasts and myotubes and found that 171 and 182 miRNAs were exported into exosomes from myoblasts and myotubes, respectively. Interestingly, some miRNAs were expressed at higher levels in exosomes than in their donor cells and vice versa, indicating a selectivity in the incorporation of miRNAs into exosomes. Moreover miRNAs from C2C12 exosomes were regulated during myogenesis. The predicted target genes of regulated exosomal miRNAs are mainly involved in the control of important signaling pathways for muscle cell differentiation (e.g., Wnt signaling pathway). We demonstrated that exosomes from myotubes can transfer small RNAs (C. elegans miRNAs and siRNA) into myoblasts. Moreover, we present evidence that exosome miRNAs secreted by myotubes are functionally able to silence Sirt1 in myoblasts. As Sirt1 regulates muscle gene expression and differentiation, our results show that myotube–exosome miRNAs could contribute to the commitment of myoblasts in the process of differentiation. Until now, myokines in muscle cell secretome provided a conceptual basis for communication between muscles. Here, we show that miRNA exosomal transfer would be a powerful means by which gene expression is orchestrated to regulate SkM metabolic homeostasis.


Molecular and Cellular Biology | 2010

A New Role for Sterol Regulatory Element Binding Protein 1 Transcription Factors in the Regulation of Muscle Mass and Muscle Cell Differentiation

Virginie Lecomte; Vanessa Euthine; Christine Durand; Damien Freyssenet; Georges Némoz; Sophie Rome; Hubert Vidal; Etienne Lefai

ABSTRACT The role of the transcription factors sterol regulatory element binding protein 1a (SREBP-1a) and SREBP-1c in the regulation of cholesterol and fatty acid metabolism has been well studied; however, little is known about their specific function in muscle. In the present study, analysis of recent microarray data from muscle cells overexpressing SREBP1 suggested that they may play a role in the regulation of myogenesis. We then demonstrated that SREBP-1a and -1c inhibit myoblast-to-myotube differentiation and also induce in vivo and in vitro muscle atrophy. Furthermore, we have identified the transcriptional repressors BHLHB2 and BHLHB3 as mediators of these effects of SREBP-1a and -1c in muscle. Both repressors are SREBP-1 target genes, and they affect the expression of numerous genes involved in the myogenic program. Our findings identify a new role for SREBP-1 transcription factors in muscle, thus linking the control of muscle mass to metabolic pathways.


Physiological Genomics | 2008

Microarray analyses of SREBP-1a and SREBP-1c target genes identify new regulatory pathways in muscle

Sophie Rome; Virginie Lecomte; Jennifer Rieusset; Cyrille Debard; Vanessa Euthine; Hubert Vidal; Etienne Lefai

In this study we have identified the target genes of sterol regulatory element binding protein (SREBP)-1a and SREBP-1c in primary cultures of human skeletal muscle cells, using adenoviral vectors expressing the mature nuclear form of human SREBP-1a or SREBP-1c combined with oligonucleotide microarrays. Overexpression of SREBP-1a led to significant changes in the expression of 1,315 genes (655 upregulated and 660 downregulated), whereas overexpression of SREBP-1c modified the mRNA level of 514 genes (310 upregulated and 204 downregulated). Gene ontology analysis indicated that in human muscle cells SREBP-1a and -1c are involved in the regulation of a large number of genes that are at the crossroads of different functional pathways, several of which are not directly connected with cholesterol and lipid metabolism. Six hundred fifty-two of all genes identified to be differentially regulated on SREBP overexpression had a sterol regulatory element (SRE) motif in their promoter sequences. Among these, 429 were specifically regulated by SREBP-1a, 69 by SREBP-1c, and 154 by both 1a and 1c. Because both isoforms recognize the same binding motif, we determined whether some of these functional differences could depend on the environment of the SRE motifs in the promoters. Results from promoter analysis showed that different combinations of transcription factor binding sites around the SRE binding motifs may determine regulatory networks of transcription that could explain the superposition of lipid and cholesterol metabolism with various other pathways involved in adaptive responses to stress like hypoxia and heat shock, or involvement in the immune response.


Cancer Cell | 2015

Glucose-Mediated N-glycosylation of SCAP Is Essential for SREBP-1 Activation and Tumor Growth

Chunming Cheng; Peng Ru; Feng Geng; Junfeng Liu; Ji Young Yoo; Xiaoning Wu; Xiang Cheng; Vanessa Euthine; Peng Hu; Jeffrey Yunhua Guo; Etienne Lefai; Balveen Kaur; Axel Nohturfft; Jianjie Ma; Arnab Chakravarti; Deliang Guo

Tumorigenesis is associated with increased glucose consumption and lipogenesis, but how these pathways are interlinked is unclear. Here, we delineate a pathway in which EGFR signaling, by increasing glucose uptake, promotes N-glycosylation of sterol regulatory element-binding protein (SREBP) cleavage-activating protein (SCAP) and consequent activation of SREBP-1, an ER-bound transcription factor with central roles in lipid metabolism. Glycosylation stabilizes SCAP and reduces its association with Insig-1, allowing movement of SCAP/SREBP to the Golgi and consequent proteolytic activation of SREBP. Xenograft studies reveal that blocking SCAP N-glycosylation ameliorates EGFRvIII-driven glioblastoma growth. Thus, SCAP acts as key glucose-responsive protein linking oncogenic signaling and fuel availability to SREBP-dependent lipogenesis. Targeting SCAP N-glycosylation may provide a promising means of treating malignancies and metabolic diseases.


International Journal of Obesity | 2007

Molecular mechanisms of diabetes reversibility after bariatric surgery

Giuseppina Rosa; Gertrude Mingrone; Melania Manco; Vanessa Euthine; Donatella Gniuli; R Calvani; Menotti Calvani; A M R Favuzzi; Marco Castagneto; Hubert Vidal

Objective:Insulin resistance is a strong biological marker of both obesity and type 2 diabetes. Abnormal fat deposition within skeletal muscle has been identified as a mechanism of obesity-associated insulin resistance. Biliopancreatic diversion (BPD), inducing a massive lipid malabsorption, leads to a reversion of type 2 diabetes. To elucidate the mechanisms of diabetes reversibility, the expression of genes involved in glucose and free fatty acids (FFAs) metabolism was investigated in skeletal muscle biopsies from obese, type 2 diabetic subjects. Peripheral insulin sensitivity and insulin secretion was also measured.Subjects:Eight Caucasian obese diabetic patients (BMI 52.1±1.85 kg/m2) were studied before and 3 years after BPD.Measurements:The mRNA levels were estimated by quantitative real-time reverse transcription polymerase chain reaction (RT-PCR), insulin sensitivity by the euglycemic–hyperinsulinemic clamp and insulin secretion using a model describing the relationship between insulin secretion and glucose concentration.Results:Whole-body glucose uptake (M), normalized by fat-free mass, significantly increased in post-obese subjects (P<0.0001). Total insulin output decreased (P<0.05) in association with a significant improvement of β-cells glucose sensitivity (P<0.05). mRNA levels of FABP3 (P<0.05), FACL (P<0.05), ACC2 (P<0.05), HKII (P<0.05) and PDK4 (P<0.05) were significantly decreased, while SREBP1c mRNA increased (P<0.05) after BPD.Conclusion:Reversibility of type 2 diabetes after BPD is dependent on the improvement of skeletal muscle insulin sensitivity, mediated by changes in the expression of genes regulating glucose and fatty acid metabolism in response to nutrient availability.


Cell Communication and Signaling | 2013

Phospholipase D regulates the size of skeletal muscle cells through the activation of mTOR signaling

Rami Jaafar; Joffrey De Larichaudy; Stéphanie Chanon; Vanessa Euthine; Christine Durand; Fabio Naro; Philippe Bertolino; Hubert Vidal; Etienne Lefai; Georges Némoz

AbstractmTOR is a major actor of skeletal muscle mass regulation in situations of atrophy or hypertrophy. It is established that Phospholipase D (PLD) activates mTOR signaling, through the binding of its product phosphatidic acid (PA) to mTOR protein. An influence of PLD on muscle cell size could thus be suspected. We explored the consequences of altered expression and activity of PLD isoforms in differentiated L6 myotubes. Inhibition or down-regulation of the PLD1 isoform markedly decreased myotube size and muscle specific protein content. Conversely, PLD1 overexpression induced muscle cell hypertrophy, both in vitro in myotubes and in vivo in mouse gastrocnemius. In the presence of atrophy-promoting dexamethasone, PLD1 overexpression or addition of exogenous PA protected myotubes against atrophy. Similarly, exogenous PA protected myotubes against TNFα-induced atrophy. Moreover, the modulation of PLD expression or activity in myotubes showed that PLD1 negatively regulates the expression of factors involved in muscle protein degradation, such as the E3-ubiquitin ligases Murf1 and Atrogin-1, and the Foxo3 transcription factor. Inhibition of mTOR by PP242 abolished the positive effects of PLD1 on myotubes, whereas modulating PLD influenced the phosphorylation of both S6K1 and Akt, which are respectively substrates of mTORC1 and mTORC2 complexes. These observations suggest that PLD1 acts through the activation of both mTORC1 and mTORC2 to induce positive trophic effects on muscle cells. This pathway may offer interesting therapeutic potentialities in the treatment of muscle wasting.


PLOS ONE | 2012

Sirtuin 1 regulates SREBP-1c expression in a LXR-dependent manner in skeletal muscle.

Aurélia Defour; Kevin Dessalle; Andréa Castro Perez; Thomas Poyot; Josiane Castells; Yann S. Gallot; Christine Durand; Vanessa Euthine; Yansong Gu; Daniel Béchet; Andre Peinnequin; Etienne Lefai; Damien Freyssenet

Sirtuin 1 (SIRT1), a NAD+-dependent protein deacetylase, has emerged as a main determinant of whole body homeostasis in mammals by regulating a large spectrum of transcriptional regulators in metabolically relevant tissue such as liver, adipose tissue and skeletal muscle. Sterol regulatory element binding protein (SREBP)-1c is a transcription factor that controls the expression of genes related to fatty acid and triglyceride synthesis in tissues with high lipid synthesis rates such as adipose tissue and liver. Previous studies indicate that SIRT1 can regulate the expression and function of SREBP-1c in liver. In the present study, we determined whether SIRT1 regulates SREBP-1c expression in skeletal muscle. SREBP-1c mRNA and protein levels were decreased in the gastrocnemius muscle of mice harboring deletion of the catalytic domain of SIRT1 (SIRT1Δex4/Δex4 mice). By contrast, adenoviral expression of SIRT1 in human myotubes increased SREBP-1c mRNA and protein levels. Importantly, SREBP-1c promoter transactivation, which was significantly increased in response to SIRT1 overexpression by gene electrotransfer in skeletal muscle, was completely abolished when liver X receptor (LXR) response elements were deleted. Finally, our in vivo data from SIRT1Δex4/Δex4 mice and in vitro data from human myotubes overexpressing SIRT1 show that SIRT1 regulates LXR acetylation in skeletal muscle cells. This suggests a possible mechanism by which the regulation of SREBP-1c gene expression by SIRT1 may require the deacetylation of LXR transcription factors.


PLOS ONE | 2012

SREBP-1 transcription factors regulate skeletal muscle cell size by controlling protein synthesis through myogenic regulatory factors.

Kevin Dessalle; Vanessa Euthine; Stéphanie Chanon; Joffrey Delarichaudy; Isao Fujii; Sophie Rome; Hubert Vidal; Georges Némoz; Chantal Simon; Etienne Lefai

SREBP-1 are ubiquitously expressed transcription factors, strongly expressed in lipogenic tissues where they regulate several metabolic processes like fatty acid synthesis. In skeletal muscle, SREBP-1 proteins regulate the expression of hundreds of genes, and we previously showed that their overexpression induced muscle atrophy together with a combined lack of expression of myogenic regulatory factors. Here we present evidences that SREBP-1 regulate muscle protein synthesis through the downregulation of the expression of MYOD1, MYOG and MEF2C factors. In myotubes overexpressing SREBP-1, restoring the expression of myogenic factors prevented atrophy and rescued protein synthesis, without affecting SREBP-1 action on atrogenes and proteolysis. Our results point out the roles of MRFs in the maintenance of the protein content and cell size in adult muscle fibre, and contribute to decipher the mechanisms by which SREBP-1 regulate muscle mass.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Bis(Monoacylglycero)Phosphate Accumulation in Macrophages Induces Intracellular Cholesterol Redistribution, Attenuates Liver-X Receptor/ATP-Binding Cassette Transporter A1/ATP-Binding Cassette Transporter G1 Pathway, and Impairs Cholesterol Efflux

Céline Luquain-Costaz; Etienne Lefai; Maud Arnal-Levron; Daria Markina; Shota Sakai; Vanessa Euthine; Asami Makino; Michel Guichardant; Shizuya Yamashita; Toshihide Kobayashi; Michel Lagarde; Philippe Moulin; Isabelle Delton-Vandenbroucke

Objective—Endosomal signature phospholipid bis(monoacylglycero)phosphate (BMP) has been involved in the regulation of cellular cholesterol homeostasis. Accumulation of BMP is a hallmark of lipid storage disorders and was recently reported as a noticeable feature of oxidized low-density lipoprotein–laden macrophages. This study was designed to delineate the consequences of macrophage BMP accumulation on intracellular cholesterol distribution, metabolism, and efflux and to unravel the underlying molecular mechanisms. Approach and Results—We have developed an experimental design to specifically increase BMP content in RAW 264.7 macrophages. After BMP accumulation, cell cholesterol distribution was markedly altered, despite no change in low-density lipoprotein uptake and hydrolysis, cholesterol esterification, or total cell cholesterol content. The expression of cholesterol-regulated genes sterol regulatory element–binding protein 2 and hydroxymethylglutaryl-coenzyme A reductase was decreased by 40%, indicative of an increase of endoplasmic reticulum–associated cholesterol. Cholesterol delivery to plasma membrane was reduced as evidenced by the 20% decrease of efflux by cyclodextrin. Functionally, BMP accumulation reduced cholesterol efflux to both apolipoprotein A1 and high-density lipoprotein by 40% and correlated with a 40% decrease in mRNA contents of ATP-binding cassette transporter A1, ATP-binding cassette transporter G1, and liver-X receptor &agr; and &bgr;. Foam cell formation induced by oxidized low-density lipoprotein exposure was exacerbated in BMP-enriched cells. Conclusions—The present work shows for the first time a strong functional link between BMP and cholesterol-regulating genes involved in both intracellular metabolism and efflux. We propose that accumulation of cellular BMP might contribute to the deregulation of cholesterol homeostasis in atheromatous macrophages.

Collaboration


Dive into the Vanessa Euthine's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georges Némoz

Institut national des sciences Appliquées de Lyon

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathilde Di Filippo

Institut national des sciences Appliquées de Lyon

View shared research outputs
Researchain Logo
Decentralizing Knowledge