Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eun Ran Kim is active.

Publication


Featured researches published by Eun Ran Kim.


Cell Metabolism | 2013

Glutamate Mediates the Function of Melanocortin Receptor 4 on Sim1 Neurons in Body Weight Regulation

Yuanzhong Xu; Zhaofei Wu; Hao Sun; Yaming Zhu; Eun Ran Kim; Bradford B. Lowell; Benjamin R. Arenkiel; Yong Xu; Qingchun Tong

The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key brain sites that mediate melanocortin action. We conditionally restored MC4R expression in Sim1 neurons in the background of Mc4r-null mice. The restoration dramatically reduced obesity in Mc4r-null mice. The anti-obesity effect was completely reversed by selective disruption of glutamate release from those same Sim1 neurons. The reversal was caused by lower energy expenditure and hyperphagia. Corroboratively, selective disruption of glutamate release from adult PVH neurons led to rapid obesity development via reduced energy expenditure and hyperphagia. Thus, this study establishes glutamate as the primary neurotransmitter that mediates MC4Rs on Sim1 neurons in body weight regulation.


The Journal of Neuroscience | 2015

GABAergic Projections from Lateral Hypothalamus to Paraventricular Hypothalamic Nucleus Promote Feeding

Wu Z; Eun Ran Kim; Sun H; Yong Xu; Leandra R. Mangieri; De Pei Li; Pan Hl; Benjamin R. Arenkiel; Qingchun Tong

Lesions of the lateral hypothalamus (LH) cause hypophagia. However, activation of glutamatergic neurons in LH inhibits feeding. These results suggest a potential importance for other LH neurons in stimulating feeding. Our current study in mice showed that disruption of GABA release from adult LH GABAergic neurons reduced feeding. LH GABAergic neurons project extensively to the paraventricular hypothalamic nucleus (PVH), and optogenetic stimulation of GABAergic LH → PVH fibers induced monosynaptic IPSCs in PVH neurons, and potently increased feeding, which depended on GABA release. In addition, disruption of GABA-A receptors in the PVH reduced feeding. Thus, we have identified a new feeding pathway in which GABAergic projections from the LH to the PVH promote feeding.


Molecular metabolism | 2013

Glutamate release mediates leptin action on energy expenditure

Yuanzhong Xu; Eun Ran Kim; Rongjie Zhao; Martin G. Myers; Heike Münzberg; Qingchun Tong

Restricting energy expenditure is an adaptive response to food shortage. Despite being insulated with massive amount of fat tissues, leptin-deficient mice lose the ability to maintain their body temperature and develop deep hypothermia, which can be suppressed by exogenous leptin, suggesting an important role for leptin in energy expenditure regulation. However, the mechanism underlying the leptin action is not clear. We generated mice with disruption of glutamate release from leptin receptor-expressing neurons by deleting vesicular glutamate transporter 2 in these neurons, and found that these mice developed mild obesity purely due to reduced energy expenditure, exhibited bouts of rapidly reduced energy expenditure, body temperature and locomotion. In addition, these mice exhibited lower energy expenditure and body temperature in response to fasting and were defective in leptin-mediated thermogenic action in brown adipose tissues. Taken together, our results identify a role for glutamate release in mediating leptin action on energy expenditure.


The Journal of Neuroscience | 2015

Hypothalamic Non-AgRP, Non-POMC GABAergic Neurons Are Required for Postweaning Feeding and NPY Hyperphagia

Eun Ran Kim; Zhaofei Wu; Hao Sun; Yuanzhong Xu; Leandra R. Mangieri; Yong Xu; Qingchun Tong

The hypothalamus is critical for feeding and body weight regulation. Prevailing studies focus on hypothalamic neurons that are defined by selectively expressing transcription factors or neuropeptides including those expressing proopiomelanocortin (POMC) and agouti-related peptides (AgRP). The Cre expression driven by the pancreas-duodenum homeobox 1 promoter is abundant in several hypothalamic nuclei but not in AgRP or POMC neurons. Using this line, we generated mice with disruption of GABA release from a major subset of non-POMC, non-AgRP GABAergic neurons in the hypothalamus. These mice exhibited a reduction in postweaning feeding and growth, and disrupted hyperphagic responses to NPY. Disruption of GABA release severely diminished GABAergic input to the paraventricular hypothalamic nucleus (PVH). Furthermore, disruption of GABA-A receptor function in the PVH also reduced postweaning feeding and blunted NPY-induced hyperphagia. Given the limited knowledge on postweaning feeding, our results are significant in identifying GABA release from a major subset of less appreciated hypothalamic neurons as a key mediator for postweaning feeding and NPY hyperphagia, and the PVH as one major downstream site that contributes significantly to the GABA action. SIGNIFICANCE STATEMENT Prevalent studies on feeding in the hypothalamus focus on well characterized, selective groups neurons [e.g., proopiomelanocortin (POMC) and agouti-related peptide (AgRP) neurons], and as a result, the role of the majority of other hypothalamic neurons is largely neglected. Here, we demonstrated an important role for GABAergic projections from non-POMC non-AgRP neurons to the paraventricular hypothalamic nucleus in promoting postweaning (mainly nocturnal) feeding and mediating NPY-induced hyperphagia. Thus, these results signify an importance to study those yet to be defined hypothalamic neurons in the regulation of energy balance and reveal a neural basis for postweaning (nocturnal) feeding and NPY-mediated hyperphagia.


Scientific Reports | 2016

Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice

Pierre Marie Badin; Isabelle K. Vila; Danesh H. Sopariwala; Vikas Yadav; Sabina Lorca; Katie Louche; Eun Ran Kim; Qingchun Tong; Min Sup Song; Cedric Moro; Vihang A. Narkar

Dissecting exercise-mimicking pathways that can replicate the benefits of exercise in obesity and diabetes may lead to promising treatments for metabolic disorders. Muscle estrogen-related receptor gamma (ERRγ) is induced by exercise, and when over-expressed in the skeletal muscle mimics exercise by stimulating glycolytic-to-oxidative myofiber switch, mitochondrial biogenesis and angiogenesis in lean mice. The objective of this study was to test whether muscle ERRγ in obese mice mitigates weight gain and insulin resistance. To do so, ERRγ was selectively over-expressed in the skeletal muscle of obese and diabetic db/db mice. Muscle ERRγ over-expression successfully triggered glycolytic-to-oxidative myofiber switch, increased functional mitochondrial content and boosted vascular supply in the db/db mice. Despite aerobic remodeling, ERRγ surprisingly failed to improve whole-body energy expenditure, block muscle accumulation of triglycerides, toxic diacylglycerols (DAG) and ceramides or suppress muscle PKCε sarcolemmal translocation in db/db mice. Consequently, muscle ERRγ did not mitigate impaired muscle insulin signaling or insulin resistance in these mice. In conclusion, obesity and diabetes in db/db mice are not amenable to selective ERRγ-directed programming of classic exercise-like effects in the skeletal muscle. Other biochemical pathways or integrated whole-body effects of exercise may be critical for resisting diabetes and obesity.


Molecular and Cellular Biology | 2016

Role of Exchange Protein Directly Activated by Cyclic AMP Isoform 1 in Energy Homeostasis: Regulation of Leptin Expression and Secretion in White Adipose Tissue.

Yaohua Hu; William G. Robichaux; Fang C. Mei; Eun Ran Kim; Hui Wang; Qingchun Tong; Jianping Jin; Mingxuan Xu; Ju Chen; Xiaodong Cheng

ABSTRACT Epacs (exchange proteins directly activated by cyclic AMP [cAMP]) act as downstream effectors of cAMP and play important roles in energy balance and glucose homeostasis. While global deletion of Epac1 in mice leads to heightened leptin sensitivity in the hypothalamus and partial protection against high-fat diet (HFD)-induced obesity, the physiological functions of Epac1 in white adipose tissue (WAT) has not been explored. Here, we report that adipose tissue-specific Epac1 knockout (AEKO) mice are more prone to HFD-induced obesity, with increased food intake, reduced energy expenditure, and impaired glucose tolerance. Despite the fact that AEKO mice on HFD display increased body weight, these mice have decreased circulating leptin levels compared to their wild-type littermates. In vivo and in vitro analyses further reveal that suppression of Epac1 in WAT decreases leptin mRNA expression and secretion by inhibiting cAMP response element binding (CREB) protein and AKT phosphorylation, respectively. Taken together, our results demonstrate that Epac1 plays an important role in regulating energy balance and glucose homeostasis by promoting leptin expression and secretion in WAT.


Scientific Reports | 2016

An Indirect Action Contributes to C-Fos Induction in Paraventricular Hypothalamic Nucleus by Neuropeptide y

Shengjie Fan; Janani Dakshinamoorthy; Eun Ran Kim; Yong Xu; Cheng Huang; Qingchun Tong

Neuropeptide Y (NPY) is a well-established orexigenic peptide and hypothalamic paraventricular nucleus (PVH) is one major brain site that mediates the orexigenic action of NPY. NPY induces abundant expression of C-Fos, an indicator for neuronal activation, in the PVH, which has been used extensively to examine the underlying NPY orexigenic neural pathways. However, PVH C-Fos induction is in discordance with the abundant expression of NPY receptors, a group of inhibitory Gi protein coupled receptors in the PVH, and with the overall role of PVH neurons in feeding inhibition, suggesting a mechanism of indirect action. Here we showed that the ability of NPY on C-Fos induction in the PVH was blunted in conditions of insulin deficiency and fasting, a condition associated with a high level of NPY and a low level of insulin. Moreover, insulin insufficiency blunted C-Fos induction in the PVH by fasting-induced re-feeding, and insulin and NPY induced c-Fos induction in the same group of PVH neurons. Finally, NPY produced normal C-Fos induction in the PVH with disruption of GABA-A receptors. Thus, our results revealed that PVH C-Fos induction by NPY is mediated by an indirect action, which is at least partially mediated by insulin action, but not GABA-A receptors.


Scientific Reports | 2017

Long-term PGC1β overexpression leads to apoptosis, autophagy and muscle wasting

Danesh H. Sopariwala; Vikas Yadav; Pierre Marie Badin; Neah Likhite; Megha Sheth; Sabina Lorca; Isabelle K. Vila; Eun Ran Kim; Qingchun Tong; Min Sup Song; George G. Rodney; Vihang A. Narkar

Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1β, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1β in the skeletal muscle, we have found that PGC1β progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1β represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1β overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1β up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1β activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle.


Methods of Molecular Biology | 2017

Oxygen Consumption Rate and Energy Expenditure in Mice: Indirect Calorimetry

Eun Ran Kim; Qingchun Tong

Global obesity epidemic demands more effective therapeutic treatments and better understanding of obesity pathophysiology. Since obesity results from energy imbalance, accurate quantification of energy intake and energy expenditure (EE) becomes an essential prerequisite to phenotype the cause for obesity development. Indirect calorimetry has long been used as one of the most established methods in EE quantification by detecting changes in levels of O2 consumption and CO2 production. In this article, we describe procedures and important considerations for an effective measurement using indirect calorimetry.


JCI insight | 2017

Red blood cell β-adrenergic receptors contribute to diet-induced energy expenditure by increasing O2 supply

Eun Ran Kim; Shengjie Fan; Dmitry Akhmedov; Kaiqi Sun; Hoyong Lim; William O’Brien; Yuanzhong Xu; Leandra R. Mangieri; Yaming Zhu; Cheng Chi Lee; Yeonseok Chung; Yang Xia; Yong Xu; Feng Li; Kai Sun; Rebecca Berdeaux; Qingchun Tong

Diet-induced obesity (DIO) represents the major cause for the current obesity epidemic, but the mechanism underlying DIO is unclear. β-Adrenergic receptors (β-ARs) play a major role in sympathetic nervous system-mediated (SNS-mediated) diet-induced energy expenditure (EE). Rbc express abundant β-ARs; however, a potential role for rbc in DIO remains untested. Here, we demonstrated that high-fat, high-caloric diet (HFD) feeding increased both EE and blood O2 content, and the HFD-induced increases in blood O2 level and in body weight gain were negatively correlated. Deficiency of β-ARs in rbc reduced glycolysis and ATP levels, diminished HFD-induced increases in both blood O2 content and EE, and resulted in DIO. Importantly, specific activation of cAMP signaling in rbc promoted HFD-induced EE and reduced HFD-induced tissue hypoxia independent of obesity. Both HFD and pharmacological activation cAMP signaling in rbc led to increased glycolysis and ATP levels. These results identify a previously unknown role for rbc β-ARs in mediating the SNS action on HFD-induced EE by increasing O2 supply, and they demonstrate that HFD-induced EE is limited by blood O2 availability and can be augenmented by increased O2 supply.

Collaboration


Dive into the Eun Ran Kim's collaboration.

Top Co-Authors

Avatar

Qingchun Tong

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Yong Xu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leandra R. Mangieri

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danesh H. Sopariwala

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hao Sun

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Min Sup Song

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge