Eurídice N. Honorio Coronado
University of Leeds
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eurídice N. Honorio Coronado.
Global Ecology and Biogeography | 2014
Edward T. A. Mitchard; Ted R. Feldpausch; Roel J. W. Brienen; Gabriela Lopez-Gonzalez; Abel Monteagudo; Timothy R. Baker; Simon L. Lewis; Jon Lloyd; Carlos A. Quesada; Manuel Gloor; Hans ter Steege; Patrick Meir; Esteban Álvarez; Alejandro Araujo-Murakami; Luiz E. O. C. Aragão; Luzmila Arroyo; Gerardo Aymard; Olaf Banki; Damien Bonal; Sandra A. Brown; Foster Brown; Carlos Cerón; Victor Chama Moscoso; Jérôme Chave; James A. Comiskey; Fernando Cornejo; Massiel Corrales Medina; Lola Da Costa; Flávia R. C. Costa; Anthony Di Fiore
Aim The accurate mapping of forest carbon stocks is essential for understanding the global carbon cycle, for assessing emissions from deforestation, and for rational land-use planning. Remote sensing (RS) is currently the key tool for this purpose, but RS does not estimate vegetation biomass directly, and thus may miss significant spatial variations in forest structure. We test the stated accuracy of pantropical carbon maps using a large independent field dataset. Location Tropical forests of the Amazon basin. The permanent archive of the field plot data can be accessed at: http://dx.doi.org/10.5521/FORESTPLOTS.NET/2014_1 Methods Two recent pantropical RS maps of vegetation carbon are compared to a unique ground-plot dataset, involving tree measurements in 413 large inventory plots located in nine countries. The RS maps were compared directly to field plots, and kriging of the field data was used to allow area-based comparisons. Results The two RS carbon maps fail to capture the main gradient in Amazon forest carbon detected using 413 ground plots, from the densely wooded tall forests of the north-east, to the light-wooded, shorter forests of the south-west. The differences between plots and RS maps far exceed the uncertainties given in these studies, with whole regions over- or under-estimated by > 25%, whereas regional uncertainties for the maps were reported to be < 5%. Main conclusions Pantropical biomass maps are widely used by governments and by projects aiming to reduce deforestation using carbon offsets, but may have significant regional biases. Carbon-mapping techniques must be revised to account for the known ecological variation in tree wood density and allometry to create maps suitable for carbon accounting. The use of single relationships between tree canopy height and above-ground biomass inevitably yields large, spatially correlated errors. This presents a significant challenge to both the forest conservation and remote sensing communities, because neither wood density nor species assemblages can be reliably mapped from space.
Environmental Research Letters | 2014
Frederick Draper; Katherine H. Roucoux; Ian T. Lawson; Edward T. A. Mitchard; Eurídice N. Honorio Coronado; Outi Lähteenoja; Luis Torres Montenegro; Elvis Valderrama Sandoval; Ricardo Zaráte; Timothy R. Baker
Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Maranon foreland basin in Peru. We find that peatlands cover 35 600±2133 km 2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391±710 Mg C ha �1 ). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems. S Online supplementary data available from stacks.iop.org/ERL/9/124017/mmedia
Microbial Ecology | 2014
Graeme T. Swindles; Monika Reczuga; Mariusz Lamentowicz; Cassandra L. Raby; T. Edward Turner; Dan J. Charman; Angela V. Gallego-Sala; Elvis Valderrama; Christopher Williams; Frederick Draper; Eurídice N. Honorio Coronado; Katherine H. Roucoux; Timothy R. Baker; Donal Mullan
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (rapparent2=0.76,RMSE=4.29;rjack2=0.68,RMSEP=5.18
Ecography | 2017
Adriane Esquivel-Muelbert; Timothy R. Baker; Kyle G. Dexter; Simon L. Lewis; Hans ter Steege; Gabriela Lopez-Gonzalez; Abel Monteagudo Mendoza; Roel J. W. Brienen; Ted R. Feldpausch; Nigel C. A. Pitman; Alfonso Alonso; Geertje M.F. van der Heijden; Marielos Peña-Claros; Manuel Ahuite; Miguel Alexiaides; Esteban Álvarez Dávila; Alejandro Araujo Murakami; Luzmila Arroyo; Milton Aulestia; Henrik Balslev; Jorcely Barroso; Rene G. A. Boot; Ángela Cano; Victor Chama Moscoso; James A. Comiskey; Fernando Cornejo; Francisco Dallmeier; Douglas C. Daly; Nállarett Dávila; Joost F. Duivenvoorden
^{2}_{apparent} \,=\, 0.76, \text {RMSE} \,=\, 4.29; \mathrm {r}^{2}_{jack} \,=\, 0.68, \text {RMSEP} \,=\, 5.18
Journal of Biogeography | 2014
Eurídice N. Honorio Coronado; Kyle G. Dexter; Monica F. Poelchau; Peter M. Hollingsworth; Oliver L. Phillips; R. Toby Pennington; Mark A. Carine
). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.
eLife | 2016
Camille Piponiot; Plinio Sist; Lucas Mazzei; Marielos Peña-Claros; Francis E. Putz; Ervan Rutishauser; Alexander Shenkin; Nataly Ascarrunz; Celso Paulo de Azevedo; Christopher Baraloto; Mabiane França; Marcelino Carneiro Guedes; Eurídice N. Honorio Coronado; Marcus Vn d'Oliveira; Ademir Roberto Ruschel; Kátia Emídio da Silva; Eleneide Doff Sotta; Cintia Rodrigues de Souza; Edson Vidal; Thales A.P. West; Bruno Hérault
Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This process implies that the range limits of taxa are defined by their ability to occur under dry conditions, and thus in terms of species distributions it predicts a nested pattern of taxa distribution from wet to dry areas. However, this ‘dry-tolerance’ hypothesis has yet to be adequately tested at large spatial and taxonomic scales. Here, using a dataset of 531 inventory plots of closed canopy forest distributed across the Western Neotropics we investigated how precipitation, evaluated both as mean annual precipitation and as the maximum climatological water deficit, influences the distribution of tropical tree species, genera and families. We find that the distributions of tree taxa are indeed nested along precipitation gradients in the western Neotropics. Taxa tolerant to seasonal drought are disproportionally widespread across the precipitation gradient, with most reaching even the wettest climates sampled; however, most taxa analysed are restricted to wet areas. Our results suggest that the ‘dry tolerance’ hypothesis has broad applicability in the worlds most species-rich forests. In addition, the large number of species restricted to wetter conditions strongly indicates that an increased frequency of drought could severely threaten biodiversity in this region. Overall, this study establishes a baseline for exploring how tropical forest tree composition may change in response to current and future environmental changes in this region.
Proceedings of the Royal Society B: Biological Sciences | 2016
Fernanda Coelho de Souza; Kyle G. Dexter; Oliver L. Phillips; Roel J. W. Brienen; Jérôme Chave; David Galbraith; Gabriela Lopez Gonzalez; Abel Monteagudo Mendoza; R. Toby Pennington; Lourens Poorter; Miguel Alexiades; Esteban Álvarez-Dávila; Ana Andrade; Luis E. O. C. Aragão; Alejandro Araujo-Murakami; E.J.M.M. Arets; Gerardo A. Aymard C.; Christopher Baraloto; Jorcely Barroso; Damien Bonal; Rene G. A. Boot; José Luís C. Camargo; James A. Comiskey; Fernando Cornejo Valverde; Plínio Barbosa de Camargo; Anthony Di Fiore; Fernando Elias; Terry L. Erwin; Ted R. Feldpausch; Leandro V. Ferreira
Aim To examine the phylogeography of Ficus insipida subsp. insipida in order to investigate patterns of spatial genetic structure across the Neotropics and within Amazonia. Location Neotropics. Methods Plastid DNA (trnH–psbA; 410 individuals from 54 populations) and nuclear ribosomal internal transcribed spacer (ITS; 85 individuals from 27 populations) sequences were sampled from Mexico to Bolivia, representing the full extent of the taxons distribution. Divergence of plastid lineages was dated using a Bayesian coalescent approach. Genetic diversity was assessed with indices of haplotype and nucleotide diversities, and genetic structure was examined using spatial analysis of molecular variance (SAMOVA) and haplotype networks. Population expansion within Amazonia was tested using neutrality and mismatch distribution tests. Results trnH–psbA sequences yielded 19 haplotypes restricted to either Mesoamerica or Amazonia; six haplotypes were found among ITS sequences. Diversification of the plastid DNA haplotypes began c. 14.6 Ma. Haplotype diversity for trnH–psbA was higher in Amazonia. Seven genetically differentiated SAMOVA groups were described for trnH–psbA, of which two were also supported by the presence of unique ITS sequences. Population expansion was suggested for both markers for the SAMOVA group that contains most Amazonian populations. Main conclusions Our results show marked population genetic structure in F. insipida between Mesoamerica and Amazonia, implying that the Andes and seasonally dry areas of northern South America are eco-climatic barriers to its migration. This pattern is shared with other widespread pioneer species affiliated to wet habitats, indicating that the ecological characteristics of species may impact upon large-scale phylogeography. Ficus insipida also shows genetic structure in north-western Amazonia potentially related to pre-Pleistocene historical events. In contrast, evident population expansion elsewhere in Amazonia, in particular the presence of genetically uniform populations across the south-west, indicate recent colonization. Our findings are consistent with palaeoecological data that suggest recent post-glacial expansion of Amazonian forests in the south.
Ecography | 2018
Frederick C. Draper; Eurídice N. Honorio Coronado; Katherine H. Roucoux; Ian T. Lawson; Nigel C. A. Pitman; Paul V. A. Fine; Oliver L. Phillips; Luis Torres Montenegro; Elvis Valderrama Sandoval; Italo Mesones; Roosevelt García-Villacorta; Fredy R. Ramirez Arévalo; Timothy R. Baker
When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors’ and recruits’ C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21 ±3 Mg C ha-1) than in the south (12 ±3 Mg C ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia. DOI: http://dx.doi.org/10.7554/eLife.21394.001
Journal of Ecology | 2018
Frederick C. Draper; Christopher Baraloto; Philip G. Brodrick; Oliver L. Phillips; Rodolfo Vásquez Martínez; Eurídice N. Honorio Coronado; Timothy R. Baker; Ricardo Zárate Gómez; Carlos A. Amasifuen Guerra; Manuel Flores; Roosevelt Garcia Villacorta; Paul V. A. Fine; Luis Freitas; Abel Monteagudo-Mendoza; Roel J. W. Brienen; Gregory P. Asner
Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change.
Plant Ecology | 2017
Klécia G. Massi; Michael I. Bird; Beatriz Schwantes Marimon; Ben Hur Marimon; Denis Silva Nogueira; Edmar Almeida de Oliveira; Oliver L. Phillips; Carlos A. Quesada; Ana Andrade; Roel J. W. Brienen; José Luís C. Camargo; Jérôme Chave; Eurídice N. Honorio Coronado; Leandro V. Ferreira; Niro Higuchi; Susan G. Laurance; William F. Laurance; Thomas E. Lovejoy; Yadvinder Malhi; Rodolfo Vásquez Martínez; Abel Monteagudo; David A. Neill; Adriana Prieto; Hirma Ramírez-Angulo; Hans ter Steege; Ted R. Feldpausch
Western Amazonia is known to harbour some of Earths most diverse forests, but previous floristic analyses have excluded peatland forests which are extensive in northern Peru and are among the most environmentally extreme ecosystems in the lowland tropics. Understanding patterns of tree species diversity in these ecosystems is important both for quantifying beta‐diversity in this region, and for understanding determinants of diversity more generally in tropical forests. Here we explore patterns of tree diversity and composition in two peatland forest types – palm swamps and peatland pole forests – using 26 forest plots distributed over a large area of northern Peru. We place our results in a regional context by making comparisons with three other major forest types: terra firme forests (29 plots), white‐sand forests (23 plots) and seasonally‐flooded forests (11 plots). Peatland forests had extremely low (within‐plot) alpha‐diversity compared with the other forest types that were sampled. In particular, peatland pole forests had the lowest levels of tree diversity yet recorded in Amazonia (20 species per 500 stems, Fishers alpha 4.57). However, peatland pole forests and palm swamps were compositionally different from each other as well as from other forest types in the region. Few species appeared to be peatland endemics. Instead, peatland forests were largely characterised by a distinctive combination of generalist species and species previously thought to be specialists of other habitats, especially white‐sand forests. We suggest that the transient nature and extreme environmental conditions of Amazonian peatland ecosystems have shaped their current patterns of tree composition and diversity. Despite their low alpha‐diversity, the unique combination of species found in tree communities in Amazonian peatlands augment regional beta‐diversity. This contribution, alongside their extremely high carbon storage capacity and lack of protection at national level, strengthens their status as a conservation priority.