Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evan N. Kirby is active.

Publication


Featured researches published by Evan N. Kirby.


The Astrophysical Journal | 2007

The All-wavelength Extended Groth Strip International Survey (AEGIS) Data Sets

M. Davis; Puragra Guhathakurta; Nicholas P. Konidaris; Jeffrey A. Newman; M. L. N. Ashby; A. D. Biggs; Pauline Barmby; Kevin Bundy; S. C. Chapman; Alison L. Coil; Christopher J. Conselice; Michael C. Cooper; Darren J. Croton; Peter R. M. Eisenhardt; Richard S. Ellis; S. M. Faber; Taotao Fang; Giovanni G. Fazio; A. Georgakakis; Brian F. Gerke; W. M. Goss; Stephen D. J. Gwyn; Justin Harker; Andrew M. Hopkins; Jia-Sheng Huang; R. J. Ivison; Susan A. Kassin; Evan N. Kirby; Anton M. Koekemoer; David C. Koo

In this the first of a series of Letters, we present a panchromatic data set in the Extended Groth Strip region of the sky. Our survey, the All-Wavelength Extended Groth Strip International Survey (AEGIS), aims to study the physical properties and evolutionary processes of galaxies at z ~ 1. It includes the following deep, wide-field imaging data sets: Chandra/ACIS X-ray, GALEX ultraviolet, CFHT/MegaCam Legacy Survey optical, CFHT/CFH12K optical, Hubble Space Telescope/ACS optical and NICMOS near-infrared, Palomar/WIRC near-infrared, Spitzer/IRAC mid-infrared, Spitzer/MIPS far-infrared, and VLA radio continuum. In addition, this region of the sky has been targeted for extensive spectroscopy using the Deep Imaging Multi-Object Spectrograph (DEIMOS) on the Keck II 10 m telescope. Our survey is compared to other large multiwavelength surveys in terms of depth and sky coverage.


Astrophysical Journal Supplement Series | 2013

The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

Jeffrey A. Newman; Michael C. Cooper; Marc Davis; S. M. Faber; Alison L. Coil; Puragra Guhathakurta; David C. Koo; Andrew C. Phillips; Charlie Conroy; Aaron A. Dutton; Douglas P. Finkbeiner; Brian F. Gerke; D. Rosario; Benjamin J. Weiner; Christopher N. A. Willmer; Renbin Yan; Justin Harker; Susan A. Kassin; Nicholas P. Konidaris; Kamson Lai; Darren Madgwick; Kai G. Noeske; Gregory D. Wirth; Andrew J. Connolly; Nick Kaiser; Evan N. Kirby; Brian C. Lemaux; Lihwai Lin; Jennifer M. Lotz; Gerard A. Luppino

We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M_B = −20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg^2 divided into four separate fields observed to a limiting apparent magnitude of R_(AB) = 24.1. Objects with z ≾0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O ii] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm^(−1) grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift errors and catastrophic failure rates are assessed through more than 2000 objects with duplicate observations. Sky subtraction is essentially photon-limited even under bright OH sky lines; we describe the strategies that permitted this, based on high image stability, accurate wavelength solutions, and powerful B-spline modeling methods. We also investigate the impact of targets that appear to be single objects in ground-based targeting imaging but prove to be composite in Hubble Space Telescope data; they constitute several percent of targets at z ~ 1, approaching ~5%–10% at z > 1.5. Summary data are given that demonstrate the superiority of DEEP2 over other deep high-precision redshift surveys at z ~ 1 in terms of redshift accuracy, sample number density, and amount of spectral information. We also provide an overview of the scientific highlights of the DEEP2 survey thus far.


The Astrophysical Journal | 2013

The Universal Stellar Mass-Stellar Metallicity Relation for Dwarf Galaxies

Evan N. Kirby; Judith G. Cohen; Puragra Guhathakurta; Lucy Cheng; James S. Bullock; Anna Gallazzi

We present spectroscopic metallicities of individual stars in seven gas-rich dwarf irregular galaxies (dIrrs), and we show that dIrrs obey the same mass-metallicity relation as the dwarf spheroidal (dSph) satellites of both the Milky Way and M31: Z_* ∝ M_*^(0.30±0.02). The uniformity of the relation is in contradiction to previous estimates of metallicity based on photometry. This relationship is roughly continuous with the stellar mass-stellar metallicity relation for galaxies as massive as M_* = 10^(12) M_☉. Although the average metallicities of dwarf galaxies depend only on stellar mass, the shapes of their metallicity distributions depend on galaxy type. The metallicity distributions of dIrrs resemble simple, leaky box chemical evolution models, whereas dSphs require an additional parameter, such as gas accretion, to explain the shapes of their metallicity distributions. Furthermore, the metallicity distributions of the more luminous dSphs have sharp, metal-rich cut-offs that are consistent with the sudden truncation of star formation due to ram pressure stripping.


The Astrophysical Journal | 2011

Multi-Element Abundance Measurements from Medium-Resolution Spectra. III. Metallicity Distributions of Milky Way Dwarf Satellite Galaxies

Evan N. Kirby; Gustavo A. Lanfranchi; Joshua D. Simon; Judith G. Cohen; Puragra Guhathakurta

We present metallicity distribution functions (MDFs) for the central regions of eight dwarf satellite galaxies of the Milky Way: Fornax, Leo I and II, Sculptor, Sextans, Draco, Canes Venatici I, and Ursa Minor. We use the published catalog of abundance measurements from the previous paper in this series. The measurements are based on spectral synthesis of iron absorption lines. For each MDF, we determine maximum likelihood fits for Leaky Box, Pre-Enriched, and Extra Gas (wherein the gas supply available for star formation increases before it decreases to zero) analytic models of chemical evolution. Although the models are too simplistic to describe any MDF in detail, a Leaky Box starting from zero metallicity gas fits none of the galaxies except Canes Venatici I well. The MDFs of some galaxies, particularly the more luminous ones, strongly prefer the Extra Gas Model to the other models. Only for Canes Venatici I does the Pre-Enriched Model fit significantly better than the Extra Gas Model. The best-fit effective yields of the less luminous half of our galaxy sample do not exceed 0.02 Z� , indicating that gas outflow is important in the chemical evolution of the less luminous galaxies. We surmise that the ratio of the importance of gas infall to gas outflow increases with galaxy luminosity. Strong correlations of average [Fe/H] and metallicity spread with luminosity support this hypothesis.


The Astrophysical Journal | 2008

Uncovering Extremely Metal-Poor Stars in the Milky Way's Ultrafaint Dwarf Spheroidal Satellite Galaxies

Evan N. Kirby; Joshua D. Simon; Marla Geha; Puragra Guhathakurta; Anna Frebel

We present new metallicity measurements for 298 individual red giant branch stars in eight of the least luminous dwarf spheroidal galaxies (dSphs) in the Milky Way (MW) system. Our technique is based on medium-resolution Keck DEIMOS spectroscopy coupled with spectral synthesis. We present the first spectroscopic metallicities at [ Fe/H ] < − 3.0 of stars in a dwarf galaxy, with individual stellar metallicities as low as [ Fe/H ] = − 3.3. Because our [Fe/H] measurements are not tied to empirical metallicity calibrators and are sensitive to arbitrarily low metallicities, we are able to probe this extremely metal-poor regime accurately. The metallicity distribution of stars in these dSphs is similar to the MW halo at the metal-poor end. We also demonstrate that the luminosity-metallicity relation previously seen in more luminous dSph galaxies (MV = − 13.4 to –8.8) extends smoothly down to an absolute magnitude of MV = − 3.7. The discovery of extremely metal-poor stars in dSphs lends support to the ΛCDM galaxy assembly paradigm wherein dwarf galaxies dissolve to form the stellar halo of the MW.


The Astrophysical Journal | 2009

The least-luminous galaxy: Spectroscopy of the milky way satellite Segue 1

Marla Geha; Beth Willman; Joshua D. Simon; Louis E. Strigari; Evan N. Kirby; David R. Law; Jay Strader

We present Keck/DEIMOS spectroscopy of Segue 1, an ultra-low-luminosity (M_V = –1.5^(+0.6)_(–0.8)) Milky Way satellite companion. While the combined size and luminosity of Segue 1 are consistent with either a globular cluster or a dwarf galaxy, we present spectroscopic evidence that this object is a dark matter-dominated dwarf galaxy. We identify 24 stars as members of Segue 1 with a mean heliocentric recession velocity of 206 ± 1.3 km s^(–1). Although Segue 1 spatially overlaps the leading arm of the Sagittarius stream, its velocity is 100 km s^(–1) different from that predicted for recent Sagittarius tidal debris at this position. We measure an internal velocity dispersion of 4.3 ± 1.2 km s^(–1). Under the assumption that these stars are gravitationally bound and in dynamical equilibrium, we infer a total mass of 4.5^(+4.7)_(–2.5) × 10^5 M_☉ in the mass-follow-light case; using a two-component maximum-likelihood model, we determine a mass within 50 pc of 8.7^(+13)_(–5.2) × 10^5 M_☉ . These imply mass-to-light (M/L) ratios of ln(M/L_V ) = 7.2^(+1.1)_(–1.2) (M/L_V = 1320^(+2680)_(–940)) and M/L_V = 2440^(+1580)_(–1775), respectively. The error distribution of the M/L is nearly lognormal, thus Segue 1 is dark matter-dominated at a high significance. Although we cannot rule out the possibility that Segue 1 has been tidally disrupted, we do not find kinematic evidence supporting tidal effects. Using spectral synthesis modeling, we derive a metallicity for the single red giant branch star in our sample of [Fe/H] = –3.3 ± 0.2 dex. Finally, we discuss the prospects for detecting gamma rays from annihilation of dark matter particles and show that Segue 1 is the most promising satellite for indirect dark matter detection. We conclude that Segue 1 is the least luminous of the ultra-faint galaxies recently discovered around the Milky Way, and is thus the least-luminous known galaxy.


The Astrophysical Journal | 2012

Characterizing the Cool KOIs. III. KOI-961: A Small Star with Large Proper Motion and Three Small Planets

Philip S. Muirhead; John Asher Johnson; Kevin Apps; Joshua A. Carter; Timothy D. Morton; Daniel C. Fabrycky; John Sebastian Pineda; Michael Bottom; Bárbara Rojas-Ayala; Everett Schlawin; Katherine Hamren; Kevin R. Covey; Justin R. Crepp; Keivan G. Stassun; Joshua Pepper; L. Hebb; Evan N. Kirby; Andrew W. Howard; Howard Isaacson; Geoffrey W. Marcy; David Levitan; T. Díaz-Santos; Lee Armus; James P. Lloyd

We present the characterization of the star KOI 961, an M dwarf with transit signals indicative of three short-period exoplanets, originally discovered by the Kepler Mission. We proceed by comparing KOI 961 to Barnards Star, a nearby, well-characterized mid-M dwarf. By comparing colors, optical and near-infrared spectra, we find remarkable agreement between the two, implying similar effective temperatures and metallicities. Both are metal-poor compared to the Solar neighborhood, have low projected rotational velocity, high absolute radial velocity, large proper motion and no quiescent H-alpha emission--all of which is consistent with being old M dwarfs. We combine empirical measurements of Barnards Star and expectations from evolutionary isochrones to estimate KOI 961s mass (0.13 ± 0.05 M_⊙), radius (0.17 ± 0.04 R_⊙) and luminosity (2.40 x 10^(-3.0 ± 0.3) L_⊙). We calculate KOI 961s distance (38.7 ± 6.3 pc) and space motions, which, like Barnards Star, are consistent with a high scale-height population in the Milky Way. We perform an independent multi-transit fit to the public Kepler light curve and significantly revise the transit parameters for the three planets. We calculate the false-positive probability for each planet-candidate, and find a less than 1% chance that any one of the transiting signals is due to a background or hierarchical eclipsing binary, validating the planetary nature of the transits. The best-fitting radii for all three planets are less than 1 Re_⊕, with KOI 961.03 being Mars-sized (Rp = 0.57 ± 0.18 R_⊕), and they represent some of the smallest exoplanets detected to date.


Nature | 2010

Linking dwarf galaxies to halo building blocks with the most metal-poor star in Sculptor

Anna Frebel; Evan N. Kirby; Joshua D. Simon

Current cosmological models indicate that the Milky Way’s stellar halo was assembled from many smaller systems. On the basis of the apparent absence of the most metal-poor stars in present-day dwarf galaxies, recent studies claimed that the true Galactic building blocks must have been vastly different from the surviving dwarfs. The discovery of an extremely iron-poor star (S1020549) in the Sculptor dwarf galaxy based on a medium-resolution spectrum cast some doubt on this conclusion. Verification of the iron-deficiency, however, and measurements of additional elements, such as the α-element Mg, are necessary to demonstrate that the same type of stars produced the metals found in dwarf galaxies and the Galactic halo. Only then can dwarf galaxy stars be conclusively linked to early stellar halo assembly. Here we report high-resolution spectroscopic abundances for 11 elements in S1020549, confirming its iron abundance of less than 1/4,000th that of the Sun, and showing that the overall abundance pattern follows that seen in low-metallicity halo stars, including the α-elements. Such chemical similarity indicates that the systems destroyed to form the halo billions of years ago were not fundamentally different from the progenitors of present-day dwarfs, and suggests that the early chemical enrichment of all galaxies may be nearly identical.


The Astrophysical Journal | 2012

THE SPLASH SURVEY: SPECTROSCOPY OF 15 M31 DWARF SPHEROIDAL SATELLITE GALAXIES*

Erik J. Tollerud; Rachael L. Beaton; Marla Geha; James S. Bullock; Puragra Guhathakurta; Jason S. Kalirai; Steven R. Majewski; Evan N. Kirby; Karoline M. Gilbert; B. Yniguez; Richard J. Patterson; James Craig Ostheimer; Jeff Cooke; Claire E. Dorman; Abrar Choudhury; Michael C. Cooper

We present a resolved star spectroscopic survey of 15 dwarf spheroidal (dSph) satellites of the Andromeda galaxy (M31). We filter foreground contamination from Milky Way (MW) stars, noting that MW substructure is evident in this contaminant sample. We also filter M31 halo field giant stars and identify the remainder as probable dSph members. We then use these members to determine the kinematical properties of the dSphs. For the first time, we confirm that And XVIII, XXI, and XXII show kinematics consistent with bound, dark-matter-dominated galaxies. From the velocity dispersions for the full sample of dSphs we determine masses, which we combine with the size and luminosity of the galaxies to produce mass-size-luminosity scaling relations. With these scalings we determine that the M31 dSphs are fully consistent with the MW dSphs, suggesting that the well-studied MW satellite population provides a fair sample for broader conclusions. We also estimate dark matter halo masses of the satellites and find that there is no sign that the luminosity of these galaxies depends on their dark halo mass, a result consistent with what is seen for MW dwarfs. Two of the M31 dSphs (And XV, XVI) have estimated maximum circular velocities smaller than 12 km s^(–1) (to 1σ), which likely places them within the lowest-mass dark matter halos known to host stars (along with Bootes I of the MW). Finally, we use the systemic velocities of the M31 satellites to estimate the mass of the M31 halo, obtaining a virial mass consistent with previous results.


The Astrophysical Journal | 2014

THE QUENCHING OF THE ULTRA-FAINT DWARF GALAXIES IN THE REIONIZATION ERA ∗

Thomas M. Brown; Jason Tumlinson; Marla Geha; Joshua D. Simon; Luis C. Vargas; Don A. Vandenberg; Evan N. Kirby; Jason S. Kalirai; Roberto J. Avila; Mario Gennaro; Henry C. Ferguson; Ricardo R. Munoz; Puragra Guhathakurta; A. Renzini

We present new constraints on the star formation histories of six ultra-faint dwarf galaxies: Bootes I, Canes Venatici II, Coma Berenices, Hercules, Leo IV, and Ursa Major I. Our analysis employs a combination of high-precision photometry obtained with the Advanced Camera for Surveys on the Hubble Space Telescope, medium-resolution spectroscopy obtained with the DEep Imaging Multi-Object Spectrograph on the W.M. Keck Observatory, and updated Victoria-Regina isochrones tailored to the abundance patterns appropriate for these galaxies. The data for five of these Milky Way satellites are best fit by a star formation history where at least 75% of the stars formed by z~10 (13.3 Gyr ago). All of the galaxies are consistent with 80% of the stars forming by z~6 (12.8 Gyr ago) and 100% of the stars forming by z~3 (11.6 Gyr ago). The similarly ancient populations of these galaxies support the hypothesis that star formation in the smallest dark matter sub-halos was suppressed by a global outside influence, such as the reionization of the universe.

Collaboration


Dive into the Evan N. Kirby's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Judith G. Cohen

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Joshua D. Simon

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Karoline M. Gilbert

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason S. Kalirai

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar

Rachael L. Beaton

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge