Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachael L. Beaton is active.

Publication


Featured researches published by Rachael L. Beaton.


The Astronomical Journal | 2013

Target selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

Gail Zasowski; Jennifer A. Johnson; Peter M. Frinchaboy; Steven R. Majewski; David L. Nidever; H. J. Rocha Pinto; Léo Girardi; Brett H. Andrews; S. D. Chojnowski; Kyle M. Cudworth; Kelly M. Jackson; Jeffrey A. Munn; M. F. Skrutskie; Rachael L. Beaton; Cullen H. Blake; Kevin R. Covey; Rohit Deshpande; Courtney R. Epstein; D. Fabbian; Scott W. Fleming; D. A. García–Hernández; A. Herrero; Sankaran Mahadevan; Sz. Mészáros; Mathias Schultheis; K. Sellgren; Ryan C. Terrien; J. van Saders; C. Allende Prieto; Dmitry Bizyaev

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The surveys broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEEs primary sample consists of ~105 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.


The Astrophysical Journal | 2011

THE LUMINOSITY PROFILE AND STRUCTURAL PARAMETERS OF THE ANDROMEDA GALAXY

Stephane Courteau; Lawrence M. Widrow; M. McDonald; Puragra Guhathakurta; Karoline M. Gilbert; Yucong Zhu; Rachael L. Beaton; Steven R. Majewski

We have constructed an extended composite luminosity profile for the Andromeda galaxy, M31, and have decomposed it into three basic luminous structural components: a bulge, a disk, and a halo. The dust-free Spitzer/Infrared Array Camera (IRAC) imaging and extended spatial coverage of ground-based optical imaging and deep star counts allow us to map M31s structure from its center to 22 kpc along the major axis. We apply, and address the limitations of, different decomposition methods for the one-dimensional luminosity profiles and two-dimensional images. These methods include nonlinear least-squares and Bayesian Monte Carlo Markov chain analyses. The basic photometric model for M31 has a Sbulge with shape index n � 2.2 ± .3 and effective radius Re = 1.0 ± 0.2 kpc, and a dust-free exponential disk of scale length Rd = 5.3 ± .5 kpc; the parameter errors reflect the range between different decomposition methods. Despite model covariances, the convergence of solutions based on different methods and current data suggests a stable set of structural parameters. The ellipticities (� = 1 − b/a) of the bulge and the disk from the IRAC image are 0.37 ± 0.03 and 0.73 ± 0.03, respectively. The bulge parameter n is rather insensitive to bandpass effects and its value (2.2) suggests a first rapid formation via mergers followed by secular growth from the disk. The M31 halo has a two-dimensional power-law index �− 2.5 ± 0. 2( or−3.5 in three-dimensional), comparable to that of the Milky Way. We find that the M31 bulge light is mostly dominant over the range Rmin 1.2 kpc. The disk takes over in the range 1.2 kpc Rmin 9 kpc, whereas the halo dominates at Rmin 9 kpc. The stellar nucleus, bulge, disk, and halo components each contribute roughly 0.05%, 23%, 73%, and 4% of the total light of M31 out to 200 kpc along the minor axis. Nominal errors for the structural parameters of the M31 bulge, disk, and halo amount to 20%. If M31 and the Milky Way are at all typical, faint stellar halos should be routinely detected in galaxy surveys reaching below μi � 27 mag arcsec −2 . We stress that our results rely on this photometric analysis alone. Structural parameters may change when other fundamental constraints, such as those provided by abundance gradients and stellar kinematics, are considered simultaneously.


The Astrophysical Journal | 2012

THE SPLASH SURVEY: SPECTROSCOPY OF 15 M31 DWARF SPHEROIDAL SATELLITE GALAXIES*

Erik J. Tollerud; Rachael L. Beaton; Marla Geha; James S. Bullock; Puragra Guhathakurta; Jason S. Kalirai; Steven R. Majewski; Evan N. Kirby; Karoline M. Gilbert; B. Yniguez; Richard J. Patterson; James Craig Ostheimer; Jeff Cooke; Claire E. Dorman; Abrar Choudhury; Michael C. Cooper

We present a resolved star spectroscopic survey of 15 dwarf spheroidal (dSph) satellites of the Andromeda galaxy (M31). We filter foreground contamination from Milky Way (MW) stars, noting that MW substructure is evident in this contaminant sample. We also filter M31 halo field giant stars and identify the remainder as probable dSph members. We then use these members to determine the kinematical properties of the dSphs. For the first time, we confirm that And XVIII, XXI, and XXII show kinematics consistent with bound, dark-matter-dominated galaxies. From the velocity dispersions for the full sample of dSphs we determine masses, which we combine with the size and luminosity of the galaxies to produce mass-size-luminosity scaling relations. With these scalings we determine that the M31 dSphs are fully consistent with the MW dSphs, suggesting that the well-studied MW satellite population provides a fair sample for broader conclusions. We also estimate dark matter halo masses of the satellites and find that there is no sign that the luminosity of these galaxies depends on their dark halo mass, a result consistent with what is seen for MW dwarfs. Two of the M31 dSphs (And XV, XVI) have estimated maximum circular velocities smaller than 12 km s^(–1) (to 1σ), which likely places them within the lowest-mass dark matter halos known to host stars (along with Bootes I of the MW). Finally, we use the systemic velocities of the M31 satellites to estimate the mass of the M31 halo, obtaining a virial mass consistent with previous results.


The Astrophysical Journal | 2012

THE M31 VELOCITY VECTOR. II. RADIAL ORBIT TOWARD THE MILKY WAY AND IMPLIED LOCAL GROUP MASS

Roeland P. van der Marel; Mark A. Fardal; Gurtina Besla; Rachael L. Beaton; Sangmo Tony Sohn; Jay Anderson; Thomas M. Brown; Puragra Guhathakurta

We determine the velocity vector of M31 with respect to the Milky Way and use this to constrain the mass of the Local Group, based on Hubble Space Telescope proper-motion measurements of three fields presented in Paper I. We construct N-body models for M31 to correct the measurements for the contributions from stellar motions internal to M31. This yields an unbiased estimate for the M31 center-of-mass motion. We also estimate the center-of-mass motion independently, using the kinematics of satellite galaxies of M31 and the Local Group, following previous work but with an expanded satellite sample. All estimates are mutually consistent, and imply a weighted average M31 heliocentric transverse velocity of (vW , vN ) = (– 125.2 ± 30.8, –73.8 ± 28.4) km s–1. We correct for the reflex motion of the Sun using the most recent insights into the solar motion within the Milky Way, which imply a larger azimuthal velocity than previously believed. This implies a radial velocity of M31 with respect to the Milky Way of V rad, M31 = –109.3 ± 4.4 km s–1, and a tangential velocity of V tan, M31 = 17.0 km s–1, with a 1σ confidence region of V tan, M31 ≤ 34.3 km s–1. Hence, the velocity vector of M31 is statistically consistent with a radial (head-on collision) orbit toward the Milky Way. We revise prior estimates for the Local Group timing mass, including corrections for cosmic bias and scatter, and obtain M LG ≡ M MW, vir + M M31, vir = (4.93 ± 1.63) × 1012 M ☉. Summing known estimates for the individual masses of M31 and the Milky Way obtained from other dynamical methods yields smaller uncertainties. Bayesian combination of the different estimates demonstrates that the timing argument has too much (cosmic) scatter to help much in reducing uncertainties on the Local Group mass, but its inclusion does tend to increase other estimates by ~10%. We derive a final estimate for the Local Group mass from literature and new considerations of M LG = (3.17 ± 0.57) × 1012 M ☉. The velocity and mass results at 95% confidence imply that M33 is bound to M31, consistent with expectation from observed tidal deformations.


The Astrophysical Journal | 2012

VERY EARLY ULTRAVIOLET AND OPTICAL OBSERVATIONS OF THE TYPE Ia SUPERNOVA 2009ig

Ryan J. Foley; Peter J. Challis; A. V. Filippenko; Mohan Ganeshalingam; Wayne B. Landsman; Weidong Li; G. H. Marion; Jeffrey M. Silverman; Rachael L. Beaton; Vardha N. Bennert; S. B. Cenko; M. Childress; Puragra Guhathakurta; Linhua Jiang; Jason S. Kalirai; Robert P. Kirshner; Alan N. Stockton; Erik J. Tollerud; Jozsef Vinko; J. C. Wheeler; Jong Hak Woo

Supernova (SN) 2009ig was discovered 17 hours after explosion by the Lick Observatory Supernova Search, promptly classified as a normal Type Ia SN (SN Ia), peaked at V = 13.5 mag, and was equatorial, making it one of the foremost supernovae for intensive study in the last decade. Here, we present ultraviolet (UV) and optical observations of SN 2009ig, starting about 1 day after explosion until around maximum brightness. Our data include excellent UV and optical light curves, 25 premaximum optical spectra, and 8 UV spectra, including the earliest UV spectrum ever obtained of a SN Ia. SN 2009ig is a relatively normal SN Ia, but does display high-velocity ejecta — the ejecta velocity measured in our earliest spectra (v � 23,000 kms −1 for Si II �6355) is the highest yet measured in a SN Ia. The spectral evolution is very dramatic at times earlier than 12 days before maximum brightness, but slows after that time. The early-time data provide a precise measurement of 17.13± 0.07 days for the SN rise time. The optical color curves and early-time spectra are significantly different from template light curves and spectra used for light-curve fitting and K-corrections, indicating that the template light curves and spectra do not properly represent all Type Ia supernovae at very early times. In the age of wide-angle sky surveys, SNe like SN 2009ig that are nearby, bright, well positioned, and promptly discovered will still be rare. As shown with SN 2009ig, detailed studies of single events can provide significantly more information for testing systematic uncertainties related to SN Ia distance estimates and constraining progenitor and explosion models than large samples of more distant SNe. Subject headings: supernovae — general; supernovae — individual (SN 2009ig)


The Astrophysical Journal | 2010

THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DWARF SPHEROIDAL GALAXIES

Jason S. Kalirai; Rachael L. Beaton; Marla Geha; Karoline M. Gilbert; Puragra Guhathakurta; Evan N. Kirby; Steven R. Majewski; James Craig Ostheimer; Richard J. Patterson; Joe Wolf

We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromedas Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of member stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s^(–1), includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each systems mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromedas total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L ~ 10^5 and 10^7 L_☉, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31s brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower luminosities between L = 10^4 and 10^6 L_☉, we find that the sizes of dSphs in the two hosts significantly overlap and that four of the faintest M31 dSphs are smaller than Milky Way counterparts. The first dynamical mass measurements of six M31 dSphs over a large range in luminosity indicate similar mass-to-light ratios compared to Milky Way dSphs among the brighter satellites, and smaller mass-to-light ratios among the fainter satellites. Combined with their similar or larger sizes at these luminosities, these results hint that the M31 dSphs are systematically less dense than Milky Way dSphs. The implications of these similarities and differences for general understanding of galaxy formation and evolution are summarized.


The Astrophysical Journal | 2010

THE SPLASH SURVEY: INTERNAL KINEMATICS, CHEMICAL ABUNDANCES, AND MASSES OF THE ANDROMEDA I, II, III, VII, X, AND XIV DWARF SPHEROIDAL GALAXIES {sup ,}

Jason S. Kalirai; Rachael L. Beaton; Steven R. Majewski; James Craig Ostheimer; Richard J. Patterson; Marla Geha; Karoline M. Gilbert; Puragra Guhathakurta; Evan N. Kirby

We present new Keck/DEIMOS spectroscopic observations of hundreds of individual stars along the sightline to the first three of the Andromeda (M31) dwarf spheroidal (dSph) galaxies to be discovered, And I, II, and III, and combine them with recent spectroscopic studies by our team of three additional M31 dSphs, And VII, X, and XIV, as a part of the SPLASH Survey (Spectroscopic and Photometric Landscape of Andromedas Stellar Halo). Member stars of each dSph are isolated from foreground Milky Way dwarf stars and M31 field contamination using a variety of photometric and spectroscopic diagnostics. Our final spectroscopic sample of member stars in each dSph, for which we measure accurate radial velocities with a median uncertainty (random plus systematic errors) of 4-5 km s^(–1), includes 80 red giants in And I, 95 in And II, 43 in And III, 18 in And VII, 22 in And X, and 38 in And XIV. The sample of confirmed members in the six dSphs is used to derive each systems mean radial velocity, intrinsic central velocity dispersion, mean abundance, abundance spread, and dynamical mass. This combined data set presents us with a unique opportunity to perform the first systematic comparison of the global properties (e.g., metallicities, sizes, and dark matter masses) of one-third of Andromedas total known dSph population with Milky Way counterparts of the same luminosity. Our overall comparisons indicate that the family of dSphs in these two hosts have both similarities and differences. For example, we find that the luminosity-metallicity relation is very similar between L ~ 10^5 and 10^7 L_☉, suggesting that the chemical evolution histories of each group of dSphs are similar. The lowest luminosity M31 dSphs appear to deviate from the relation, possibly suggesting tidal stripping. Previous observations have noted that the sizes of M31s brightest dSphs are systematically larger than Milky Way satellites of similar luminosity. At lower luminosities between L = 10^4 and 10^6 L_☉, we find that the sizes of dSphs in the two hosts significantly overlap and that four of the faintest M31 dSphs are smaller than Milky Way counterparts. The first dynamical mass measurements of six M31 dSphs over a large range in luminosity indicate similar mass-to-light ratios compared to Milky Way dSphs among the brighter satellites, and smaller mass-to-light ratios among the fainter satellites. Combined with their similar or larger sizes at these luminosities, these results hint that the M31 dSphs are systematically less dense than Milky Way dSphs. The implications of these similarities and differences for general understanding of galaxy formation and evolution are summarized.


The Astrophysical Journal | 2012

Global Properties of M31's Stellar Halo from the SPLASH Survey. I. Surface Brightness Profile

Karoline M. Gilbert; Puragra Guhathakurta; Rachael L. Beaton; James S. Bullock; Marla Geha; Jason S. Kalirai; Evan N. Kirby; Steven R. Majewski; James Craig Ostheimer; Richard J. Patterson; Erik J. Tollerud; M. Tanaka; Masashi Chiba

We present the surface brightness profile of M31s stellar halo out to a projected radius of 175 kpc. The surface brightness estimates are based on confirmed samples of M31 red giant branch stars derived from Keck/DEIMOS spectroscopic observations. A set of empirical spectroscopic and photometric M31 membership diagnostics is used to identify and reject foreground and background contaminants. This enables us to trace the stellar halo of M31 to larger projected distances and fainter surface brightnesses than previous photometric studies. The surface brightness profile of M31s halo follows a power law with index –2.2 ± 0.2 and extends to a projected distance of at least ~175 kpc (~2/3 of M31s virial radius), with no evidence of a downward break at large radii. The best-fit elliptical isophotes have b/a = 0.94 with the major axis of the halo aligned along the minor axis of M31s disk, consistent with a prolate halo, although the data are also consistent with M31s halo having spherical symmetry. The fact that tidal debris features are kinematically cold is used to identify substructure in the spectroscopic fields out to projected radii of 90 kpc and investigate the effect of this substructure on the surface brightness profile. The scatter in the surface brightness profile is reduced when kinematically identified tidal debris features in M31 are statistically subtracted; the remaining profile indicates that a comparatively diffuse stellar component to M31s stellar halo exists to large distances. Beyond 90 kpc, kinematically cold tidal debris features cannot be identified due to small number statistics; nevertheless, the significant field-to-field variation in surface brightness beyond 90 kpc suggests that the outermost region of M31s halo is also comprised to a significant degree of stars stripped from accreted objects.


The Astrophysical Journal | 2011

THE FIRST ULTRA-COOL BROWN DWARF DISCOVERED BY THE WIDE-FIELD INFRARED SURVEY EXPLORER

A. Mainzer; Michael C. Cushing; M. F. Skrutskie; Christopher R. Gelino; J. Davy Kirkpatrick; T. H. Jarrett; Frank J. Masci; Mark S. Marley; Didier Saumon; Edward L. Wright; Rachael L. Beaton; Matthias Dietrich; Peter R. M. Eisenhardt; Peter Marcus Garnavich; O. Kuhn; David T. Leisawitz; Kenneth A. Marsh; Ian S. McLean; Deborah Lynne Padgett; Katherine Rueff

We report the discovery of the first new ultra-cool brown dwarf (BDs) found with the Wide-field Infrared Survey Explorer (WISE). The objects preliminary designation is WISEPC J045853.90+643451.9. Follow-up spectroscopy with the LUCIFER instrument on the Large Binocular Telescope indicates that it is a very late-type T dwarf with a spectral type approximately equal to T9. Fits to an IRTF/SpeX 0.8-2.5 μm spectrum to the model atmospheres of Marley and Saumon indicate an effective temperature of approximately 600 K as well as the presence of vertical mixing in its atmosphere. The new BD is easily detected by WISE, with a signal-to-noise ratio of ~36 at 4.6 μm. Current estimates place it at a distance of 6-10 pc. This object represents the first in what will likely be hundreds of nearby BDs found by WISE that will be suitable for follow-up observations, including those with the James Webb Space Telescope. One of the two primary scientific goals of the WISE mission is to find the coolest, closest stars to our Sun; the discovery of this new BD proves that WISE is capable of fulfilling this objective.


Monthly Notices of the Royal Astronomical Society | 2006

Unravelling the mystery of the M31 bar

E. Athanassoula; Rachael L. Beaton

The inclination of M31 is too close to edge-on for a bar component to be easily recognized and is not sufficiently edge-on for a boxy/peanut bulge to protrude clearly out of the equatorial plane. Nevertheless, a sufficient number of clues allow us to argue that this galaxy is barred. We use fully self-consistent N-body simulations of barred galaxies and compare them with both photometric and kinematic observational data for M31. In particular, we rely on the near-infrared photometry presented in a companion paper. We compare isodensity contours to isophotal contours and the light profile along cuts parallel to the galaxy major axis and offset towards the north, or the south, to mass profiles along similar cuts on the model. All these comparisons, as well as position‐velocity diagrams for the gaseous component, give us strong arguments that M31 is barred. We compare four fiducial N-body models to the data and thus set constraints on the parameters of the M31 bar, as its strength, length and orientation. Our ‘best’ models, although not meant to be exact models of M31, reproduce in a very satisfactory way the main relevant observations. We present arguments that M31 has both a classical and a boxy/peanut bulge. Its pseudo-ring-like structure at roughly 50 arcmin is near the outer Lindblad resonance of the bar and could thus be an outer ring, as often observed in barred galaxies. The shape of the isophotes also argues that the vertically thin part of the M31 bar extends considerably further out than its boxy bulge, that is, that the boxy bulge is only part of the bar, thus confirming predictions from orbital structure studies and from previous N-body simulations. It seems very likely that the backbone of M31’s boxy bulge is families of periodic orbits, members of the x1-tree and bifurcating from the x1 family at its higher order vertical resonances, such as the x1v3 or x1v4 families.

Collaboration


Dive into the Rachael L. Beaton's collaboration.

Top Co-Authors

Avatar

Steven R. Majewski

Association of Universities for Research in Astronomy

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karoline M. Gilbert

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Barry F. Madore

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar

Mark Seibert

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A. Rich

Carnegie Institution for Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan N. Kirby

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge