Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Evangelos Vassos is active.

Publication


Featured researches published by Evangelos Vassos.


Nature | 2008

Large recurrent microdeletions associated with schizophrenia.

Hreinn Stefansson; Dan Rujescu; Sven Cichon; Olli Pietiläinen; Andres Ingason; Stacy Steinberg; Ragnheidur Fossdal; Engilbert Sigurdsson; T. Sigmundsson; Jacobine E. Buizer-Voskamp; Thomas V O Hansen; Klaus D. Jakobsen; Pierandrea Muglia; Clyde Francks; Paul M. Matthews; Arnaldur Gylfason; Bjarni V. Halldórsson; Daniel F. Gudbjartsson; Thorgeir E. Thorgeirsson; Asgeir Sigurdsson; Adalbjorg Jonasdottir; Aslaug Jonasdottir; Asgeir Björnsson; Sigurborg Mattiasdottir; Thorarinn Blondal; Magnus Haraldsson; Brynja B. Magnusdottir; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann

Reduced fecundity, associated with severe mental disorders, places negative selection pressure on risk alleles and may explain, in part, why common variants have not been found that confer risk of disorders such as autism, schizophrenia and mental retardation. Thus, rare variants may account for a larger fraction of the overall genetic risk than previously assumed. In contrast to rare single nucleotide mutations, rare copy number variations (CNVs) can be detected using genome-wide single nucleotide polymorphism arrays. This has led to the identification of CNVs associated with mental retardation and autism. In a genome-wide search for CNVs associating with schizophrenia, we used a population-based sample to identify de novo CNVs by analysing 9,878 transmissions from parents to offspring. The 66 de novo CNVs identified were tested for association in a sample of 1,433 schizophrenia cases and 33,250 controls. Three deletions at 1q21.1, 15q11.2 and 15q13.3 showing nominal association with schizophrenia in the first sample (phase I) were followed up in a second sample of 3,285 cases and 7,951 controls (phase II). All three deletions significantly associate with schizophrenia and related psychoses in the combined sample. The identification of these rare, recurrent risk variants, having occurred independently in multiple founders and being subject to negative selection, is important in itself. CNV analysis may also point the way to the identification of additional and more prevalent risk variants in genes and pathways involved in schizophrenia.


Nature | 2009

Common variants conferring risk of schizophrenia

Hreinn Stefansson; Roel A. Ophoff; Stacy Steinberg; Ole A. Andreassen; Sven Cichon; Dan Rujescu; Thomas Werge; Olli Pietiläinen; Ole Mors; Preben Bo Mortensen; Engilbert Sigurdsson; Omar Gustafsson; Mette Nyegaard; Annamari Tuulio-Henriksson; Andres Ingason; Thomas Hansen; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Anders D. Børglum; Annette M. Hartmann; Anders Fink-Jensen; Merete Nordentoft; David M. Hougaard; Bent Nørgaard-Pedersen; Yvonne Böttcher; Jes Olesen; René Breuer; Hans-Jürgen Möller; Ina Giegling

Schizophrenia is a complex disorder, caused by both genetic and environmental factors and their interactions. Research on pathogenesis has traditionally focused on neurotransmitter systems in the brain, particularly those involving dopamine. Schizophrenia has been considered a separate disease for over a century, but in the absence of clear biological markers, diagnosis has historically been based on signs and symptoms. A fundamental message emerging from genome-wide association studies of copy number variations (CNVs) associated with the disease is that its genetic basis does not necessarily conform to classical nosological disease boundaries. Certain CNVs confer not only high relative risk of schizophrenia but also of other psychiatric disorders. The structural variations associated with schizophrenia can involve several genes and the phenotypic syndromes, or the ‘genomic disorders’, have not yet been characterized. Single nucleotide polymorphism (SNP)-based genome-wide association studies with the potential to implicate individual genes in complex diseases may reveal underlying biological pathways. Here we combined SNP data from several large genome-wide scans and followed up the most significant association signals. We found significant association with several markers spanning the major histocompatibility complex (MHC) region on chromosome 6p21.3-22.1, a marker located upstream of the neurogranin gene (NRGN) on 11q24.2 and a marker in intron four of transcription factor 4 (TCF4) on 18q21.2. Our findings implicating the MHC region are consistent with an immune component to schizophrenia risk, whereas the association with NRGN and TCF4 points to perturbation of pathways involved in brain development, memory and cognition.


Human Molecular Genetics | 2009

Disruption of the neurexin 1 gene is associated with schizophrenia

Dan Rujescu; Andres Ingason; Sven Cichon; Olli Pietiläinen; Michael R. Barnes; Timothea Toulopoulou; Marco Picchioni; Evangelos Vassos; Ulrich Ettinger; Elvira Bramon; Robin M. Murray; Mirella Ruggeri; Sarah Tosato; Chiara Bonetto; Stacy Steinberg; Engilbert Sigurdsson; T. Sigmundsson; Hannes Petursson; Arnaldur Gylfason; Pall Olason; Gudmundur Hardarsson; Gudrun A Jonsdottir; Omar Gustafsson; Ragnheidur Fossdal; Ina Giegling; Hans-Jürgen Möller; Annette M. Hartmann; Per Hoffmann; Caroline Crombie; Gillian M. Fraser

Deletions within the neurexin 1 gene (NRXN1; 2p16.3) are associated with autism and have also been reported in two families with schizophrenia. We examined NRXN1, and the closely related NRXN2 and NRXN3 genes, for copy number variants (CNVs) in 2977 schizophrenia patients and 33 746 controls from seven European populations (Iceland, Finland, Norway, Germany, The Netherlands, Italy and UK) using microarray data. We found 66 deletions and 5 duplications in NRXN1, including a de novo deletion: 12 deletions and 2 duplications occurred in schizophrenia cases (0.47%) compared to 49 and 3 (0.15%) in controls. There was no common breakpoint and the CNVs varied from 18 to 420 kb. No CNVs were found in NRXN2 or NRXN3. We performed a Cochran-Mantel-Haenszel exact test to estimate association between all CNVs and schizophrenia (P = 0.13; OR = 1.73; 95% CI 0.81-3.50). Because the penetrance of NRXN1 CNVs may vary according to the level of functional impact on the gene, we next restricted the association analysis to CNVs that disrupt exons (0.24% of cases and 0.015% of controls). These were significantly associated with a high odds ratio (P = 0.0027; OR 8.97, 95% CI 1.8-51.9). We conclude that NRXN1 deletions affecting exons confer risk of schizophrenia.


Molecular Psychiatry | 2011

Copy number variations of chromosome 16p13.1 region associated with schizophrenia

Andres Ingason; Dan Rujescu; Sven Cichon; Engilbert Sigurdsson; T. Sigmundsson; Olli Pietiläinen; Jacobine E. Buizer-Voskamp; Eric Strengman; Clyde Francks; Pierandrea Muglia; Arnaldur Gylfason; Omar Gustafsson; Pall Olason; Stacy Steinberg; Thomas V O Hansen; Klaus D. Jakobsen; Henrik B. Rasmussen; Ina Giegling; H.-J. Möller; Annette M. Hartmann; Caroline Crombie; Gillian M. Fraser; Nicholas Walker; Jan-Erik Lönnqvist; Jaana Suvisaari; Annamari Tuulio-Henriksson; Elvira Bramon; Lambertus A. Kiemeney; Barbara Franke; Robin M. Murray

Deletions and reciprocal duplications of the chromosome 16p13.1 region have recently been reported in several cases of autism and mental retardation (MR). As genomic copy number variants found in these two disorders may also associate with schizophrenia, we examined 4345 schizophrenia patients and 35 079 controls from 8 European populations for duplications and deletions at the 16p13.1 locus, using microarray data. We found a threefold excess of duplications and deletions in schizophrenia cases compared with controls, with duplications present in 0.30% of cases versus 0.09% of controls (P=0.007) and deletions in 0.12 % of cases and 0.04% of controls (P>0.05). The region can be divided into three intervals defined by flanking low copy repeats. Duplications spanning intervals I and II showed the most significant (P=0.00010) association with schizophrenia. The age of onset in duplication and deletion carriers among cases ranged from 12 to 35 years, and the majority were males with a family history of psychiatric disorders. In a single Icelandic family, a duplication spanning intervals I and II was present in two cases of schizophrenia, and individual cases of alcoholism, attention deficit hyperactivity disorder and dyslexia. Candidate genes in the region include NTAN1 and NDE1. We conclude that duplications and perhaps also deletions of chromosome 16p13.1, previously reported to be associated with autism and MR, also confer risk of schizophrenia.


Human Molecular Genetics | 2011

Common Variants at VRK2 and TCF4 Conferring Risk of Schizophrenia

Stacy Steinberg; Simone de Jong; Ole A. Andreassen; Thomas Werge; Anders D. Børglum; Ole Mors; Preben Bo Mortensen; Omar Gustafsson; Javier Costas; Olli Pietiläinen; Ditte Demontis; Sergi Papiol; Johanna Huttenlocher; Manuel Mattheisen; René Breuer; Evangelos Vassos; Ina Giegling; Gillian M. Fraser; Nicholas Walker; Annamari Tuulio-Henriksson; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Ingrid Agartz; Ingrid Melle; Srdjan Djurovic; Eric Strengman; Gesche Jürgens; Birte Glenthøj; Lars Terenius

Common sequence variants have recently joined rare structural polymorphisms as genetic factors with strong evidence for association with schizophrenia. Here we extend our previous genome-wide association study and meta-analysis (totalling 7 946 cases and 19 036 controls) by examining an expanded set of variants using an enlarged follow-up sample (up to 10 260 cases and 23 500 controls). In addition to previously reported alleles in the major histocompatibility complex region, near neurogranin (NRGN) and in an intron of transcription factor 4 (TCF4), we find two novel variants showing genome-wide significant association: rs2312147[C], upstream of vaccinia-related kinase 2 (VRK2) [odds ratio (OR) = 1.09, P = 1.9 × 10(-9)] and rs4309482[A], between coiled-coiled domain containing 68 (CCDC68) and TCF4, about 400 kb from the previously described risk allele, but not accounted for by its association (OR = 1.09, P = 7.8 × 10(-9)).


Schizophrenia Bulletin | 2012

Meta-Analysis of the Association of Urbanicity With Schizophrenia

Evangelos Vassos; Carsten Bøcker Pedersen; Robin M. Murray; David A. Collier; Cathryn M. Lewis

The association between urbanicity and risk of schizophrenia is well established. The incidence of schizophrenia has been observed to increase in line with rising levels of urbanicity, as measured in terms of population size or density. This association is expressed as Incidence Rate Ratio (IRR), and the results are usually presented by comparing the most urban with the most rural environment. In this study, we undertook to express the effect of urbanicity on the risk of schizophrenia in a linear form and to perform a meta-analysis of all available evidence. We first employed a simple regression analysis of log (IRR) as given in each study on the urbanicity category, assuming a uniform distribution and a linear association. In order to obtain more accurate estimates, we developed a more sophisticated method that generates individual data points with simulation from the summary data presented in the original studies, and then fits a logistic regression model. The estimates from each study were combined with meta-analysis. Despite the challenges that arise from differences between studies as regards to the number and relative size of urbanicity levels, a linear association was observed between the logarithm of the odds of risk for schizophrenia and urbanicity. The risk for schizophrenia at the most urban environment was estimated to be 2.37 times higher than in the most rural environment. The same effect was found when studies measuring the risk for nonaffective psychosis were included.


Molecular Psychiatry | 2011

Expanding the range of ZNF804A variants conferring risk of psychosis

Stacy Steinberg; O. Mors; Anders D. Børglum; O. Gustafsson; Thomas Werge; Preben Bo Mortensen; Ole A. Andreassen; Engilbert Sigurdsson; Thorgeir E. Thorgeirsson; Yvonne Böttcher; Pall Olason; Roel A. Ophoff; Sven Cichon; Iris H Gudjonsdottir; Olli Pietiläinen; Mette Nyegaard; Annamari Tuulio-Henriksson; Andres Ingason; Thomas Hansen; Lavinia Athanasiu; Jaana Suvisaari; Jouko Lönnqvist; Tiina Paunio; Annette M. Hartmann; Gesche Jürgens; Merete Nordentoft; David M. Hougaard; B. Norgaard-Pedersen; René Breuer; H.-J. Möller

A trio of genome-wide association studies recently reported sequence variants at three loci to be significantly associated with schizophrenia. No sequence polymorphism had been unequivocally (P<5 × 10−8) associated with schizophrenia earlier. However, one variant, rs1344706[T], had come very close. This polymorphism, located in an intron of ZNF804A, was reported to associate with schizophrenia with a P-value of 1.6 × 10−7, and with psychosis (schizophrenia plus bipolar disorder) with a P-value of 1.0 × 10−8. In this study, using 5164 schizophrenia cases and 20 709 controls, we replicated the association with schizophrenia (odds ratio OR=1.08, P=0.0029) and, by adding bipolar disorder patients, we also confirmed the association with psychosis (added N=609, OR=1.09, P=0.00065). Furthermore, as it has been proposed that variants such as rs1344706[T]—common and with low relative risk—may also serve to identify regions harboring less common, higher-risk susceptibility alleles, we searched ZNF804A for large copy number variants (CNVs) in 4235 psychosis patients, 1173 patients with other psychiatric disorders and 39 481 controls. We identified two CNVs including at least part of ZNF804A in psychosis patients and no ZNF804A CNVs in controls (P=0.013 for association with psychosis). In addition, we found a ZNF804A CNV in an anxiety patient (P=0.0016 for association with the larger set of psychiatric disorders).


Molecular Psychiatry | 2014

Systematic meta-analyses and field synopsis of genetic association studies of violence and aggression

Evangelos Vassos; David A. Collier; Seena Fazel

A large number of candidate gene studies for aggression and violence have been conducted. Successful identification of associations between genetic markers and aggression would contribute to understanding the neurobiology of antisocial behavior and potentially provide useful tools for risk prediction and therapeutic targets for high-risk groups of patients and offenders. We systematically reviewed the literature and assessed the evidence on genetic association studies of aggression and related outcomes in order to provide a field synopsis. We searched PubMed and Huge Navigator databases and sought additional data through reviewing reference lists and correspondence with investigators. Genetic association studies were included if outcome data on aggression or violent behavior either as a binary outcome or as a quantitative trait were provided. From 1331 potentially relevant investigations, 185 studies constituting 277 independent associations on 31 genes fulfilled the predetermined selection criteria. Data from variants investigated in three or more samples were combined in meta-analyses and potential sources of heterogeneity were investigated using subgroup analyses. In the primary analyses, which used relaxed inclusion criteria, we found no association between any polymorphism analyzed and aggression at the 5% level of significance. Subgroup analyses, including by severity of outcome, age group, characteristics of the sample and ethnicity, did not demonstrate any consistent findings. Current evidence does not support the use of such genes to predict dangerousness or as markers for therapeutic interventions.


Schizophrenia Bulletin | 2016

Meta-analysis of the Association Between the Level of Cannabis Use and Risk of Psychosis

Arianna Marconi; Marta Di Forti; Cathryn M. Lewis; Robin M. Murray; Evangelos Vassos

Cannabis use has been reported to induce long-lasting psychotic disorders and a dose-response relationship has been observed. We performed a systematic review of studies that investigate the association between the degree of cannabis consumption and psychosis and a meta-analysis to quantify the magnitude of effect. Published studies were identified through search of electronic databases, supplemented by manual searches of bibliographies. Studies were considered if they provided data on cannabis consumption prior to the onset of psychosis using a dose criterion (frequency/amount used) and reported psychosis-related outcomes. We performed random effects meta-analysis of individual data points generated with a simulation method from the summary data of the original studies. From 571 references, 18 studies fulfilled inclusion criteria for the systematic review and 10 were inserted in the meta-analysis, enrolling a total of 66 816 individuals. Higher levels of cannabis use were associated with increased risk for psychosis in all the included studies. A logistic regression model gave an OR of 3.90 (95% CI 2.84 to 5.34) for the risk of schizophrenia and other psychosis-related outcomes among the heaviest cannabis users compared to the nonusers. Current evidence shows that high levels of cannabis use increase the risk of psychotic outcomes and confirms a dose-response relationship between the level of use and the risk for psychosis. Although a causal link cannot be unequivocally established, there is sufficient evidence to justify harm reduction prevention programs.


PLOS ONE | 2013

Male-Biased Autosomal Effect of 16p13.11 Copy Number Variation in Neurodevelopmental Disorders

Maria Tropeano; Joo Wook Ahn; Richard Dobson; Gerome Breen; Abhishek Dixit; Deb K. Pal; Peter McGuffin; Anne Farmer; Peter S. White; Joris Andrieux; Evangelos Vassos; Caroline Mackie Ogilvie; Sarah Curran; David A. Collier

Copy number variants (CNVs) at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH); cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005), and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002), but not in females (OR = 1.19, p = 0.673). The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005), located in the 0.83 Mb genomic region between 15.49–16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13.11 represent incompletely penetrant pathogenic mutations that predispose to a range of neurodevelopmental disorders, and suggest a sex-limited effect on the penetrance of the pathological phenotypes at the 16p13.11 locus.

Collaboration


Dive into the Evangelos Vassos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pak Sham

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Sophia Frangou

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge