Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eve H. Pickering is active.

Publication


Featured researches published by Eve H. Pickering.


PLOS ONE | 2011

Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis.

Rebecca Craig-Schapiro; Max Kuhn; Chengjie Xiong; Eve H. Pickering; Jingxia Liu; Thomas P. Misko; Richard J. Perrin; Kelly R. Bales; Holly Soares; Anne M. Fagan; David M. Holtzman

Background Clinicopathological studies suggest that Alzheimers disease (AD) pathology begins ∼10–15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181). Methods and Findings Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age. Conclusions/Significance Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.


Neurology | 2012

Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease

William T. Hu; David M. Holtzman; Anne M. Fagan; Leslie M. Shaw; Richard J. Perrin; Steven E. Arnold; Murray Grossman; Chengjie Xiong; Rebecca Craig-Schapiro; Christopher M. Clark; Eve H. Pickering; Max Kuhn; Yu Chen; Vivianna M. Van Deerlin; Leo McCluskey; Lauren Elman; Jason Karlawish; Alice Chen-Plotkin; Howard I. Hurtig; Andrew Siderowf; Frank Swenson; Virginia M.-Y. Lee; John C. Morris; John Q. Trojanowski; Holly Soares

Objectives: While plasma biomarkers have been proposed to aid in the clinical diagnosis of Alzheimer disease (AD), few biomarkers have been validated in independent patient cohorts. Here we aim to determine plasma biomarkers associated with AD in 2 independent cohorts and validate the findings in the multicenter Alzheimers Disease Neuroimaging Initiative (ADNI). Methods: Using a targeted proteomic approach, we measured levels of 190 plasma proteins and peptides in 600 participants from 2 independent centers (University of Pennsylvania, Philadelphia; Washington University, St. Louis, MO), and identified 17 analytes associated with the diagnosis of very mild dementia/mild cognitive impairment (MCI) or AD. Four analytes (apoE, B-type natriuretic peptide, C-reactive protein, pancreatic polypeptide) were also found to be altered in clinical MCI/AD in the ADNI cohort (n = 566). Regression analysis showed CSF Aβ42 levels and t-tau/Aβ42 ratios to correlate with the number of APOE4 alleles and plasma levels of B-type natriuretic peptide and pancreatic polypeptide. Conclusion: Four plasma analytes were consistently associated with the diagnosis of very mild dementia/MCI/AD in 3 independent clinical cohorts. These plasma biomarkers may predict underlying AD through their association with CSF AD biomarkers, and the association between plasma and CSF amyloid biomarkers needs to be confirmed in a prospective study.


Acta Neuropathologica | 2010

Novel CSF biomarkers for Alzheimer’s disease and mild cognitive impairment

William T. Hu; Alice Chen-Plotkin; Steven E. Arnold; Murray Grossman; Christopher M. Clark; Leslie M. Shaw; Eve H. Pickering; Max Kuhn; Yu Chen; Leo McCluskey; Lauren Elman; Jason Karlawish; Howard I. Hurtig; Andrew Siderowf; Virginia M.-Y. Lee; Holly Soares; John Q. Trojanowski

Altered levels of cerebrospinal fluid (CSF) peptides related to Alzheimer’s disease (AD) are associated with pathologic AD diagnosis, although cognitively normal subjects can also have abnormal levels of these AD biomarkers. To identify novel CSF biomarkers that distinguish pathologically confirmed AD from cognitively normal subjects and patients with other neurodegenerative disorders, we collected antemortem CSF samples from 66 AD patients and 25 patients with other neurodegenerative dementias followed longitudinally to neuropathologic confirmation, plus CSF from 33 cognitively normal subjects. We measured levels of 151 novel analytes via a targeted multiplex panel enriched in cytokines, chemokines and growth factors, as well as established AD CSF biomarkers (levels of Aβ42, tau and p-tau181). Two categories of biomarkers were identified: (1) analytes that specifically distinguished AD (especially CSF Aβ42 levels) from cognitively normal subjects and other disorders; and (2) analytes altered in multiple diseases (NrCAM, PDGF, C3, IL-1α), but not in cognitively normal subjects. A multi-prong analytical approach showed AD patients were best distinguished from non-AD cases (including cognitively normal subjects and patients with other neurodegenerative disorders) by a combination of traditional AD biomarkers and novel multiplex biomarkers. Six novel biomarkers (C3, CgA, IL-1α, I-309, NrCAM and VEGF) were correlated with the severity of cognitive impairment at CSF collection, and altered levels of IL-1α and TECK associated with subsequent cognitive decline in 38 longitudinally followed subjects with mild cognitive impairment. In summary, our targeted proteomic screen revealed novel CSF biomarkers that can improve the distinction between AD and non-AD cases by established biomarkers alone.


PLOS ONE | 2011

Meta-analysis for genome-wide association study identifies multiple variants at the BIN1 locus associated with late-onset Alzheimer's disease.

Xiaolan Hu; Eve H. Pickering; Yingxue Cathy Liu; Stephanie S.K. Hall; Helene Fournier; Elyse Katz; Bryan M. DeChairo; Sally John; Paul Van Eerdewegh; Holly Soares

Recent GWAS studies focused on uncovering novel genetic loci related to AD have revealed associations with variants near CLU, CR1, PICALM and BIN1. In this study, we conducted a genome-wide association study in an independent set of 1034 cases and 1186 controls using the Illumina genotyping platforms. By coupling our data with available GWAS datasets from the ADNI and GenADA, we replicated the original associations in both PICALM (rs3851179) and CR1 (rs3818361). The PICALM variant seems to be non-significant after we adjusted for APOE e4 status. We further tested our top markers in 751 independent cases and 751 matched controls. Besides the markers close to the APOE locus, a marker (rs12989701) upstream of BIN1 locus was replicated and the combined analysis reached genome-wide significance level (p = 5E-08). We combined our data with the published Harold et al. study and meta-analysis with all available 6521 cases and 10360 controls at the BIN1 locus revealed two significant variants (rs12989701, p = 1.32E-10 and rs744373, p = 3.16E-10) in limited linkage disequilibrium (r2 = 0.05) with each other. The independent contribution of both SNPs was supported by haplotype conditional analysis. We also conducted multivariate analysis in canonical pathways and identified a consistent signal in the downstream pathways targeted by Gleevec (P = 0.004 in Pfizer; P = 0.028 in ADNI and P = 0.04 in GenADA). We further tested variants in CLU, PICALM, BIN1 and CR1 for association with disease progression in 597 AD patients where longitudinal cognitive measures are sufficient. Both the PICALM and CLU variants showed nominal significant association with cognitive decline as measured by change in Clinical Dementia Rating-sum of boxes (CDR-SB) score from the baseline but did not pass multiple-test correction. Future experiments will help us better understand potential roles of these genetic loci in AD pathology.


Translational Psychiatry | 2011

Pretreatment metabotype as a predictor of response to sertraline or placebo in depressed outpatients: a proof of concept

Rima Kaddurah-Daouk; Stephen H. Boyle; Wayne R. Matson; Swati Sharma; Samantha Matson; Hongjie Zhu; Mikhail B. Bogdanov; Erik Churchill; Ranga R. Krishnan; A J Rush; Eve H. Pickering; Marielle Delnomdedieu

The purpose of this study was to determine whether the baseline metabolic profile (that is, metabotype) of a patient with major depressive disorder (MDD) would define how an individual will respond to treatment. Outpatients with MDD were randomly assigned to sertraline (up to 150 mg per day) (N=43) or placebo (N=46) in a double-blind 4-week trial. Baseline serum samples were profiled using the liquid chromatography electrochemical array; the output was digitized to create a ‘digital map’ of the entire measurable response for a particular sample. Response was defined as ⩾50% reduction baseline to week 4 in the 17-item Hamilton Rating Scale for Depression total score. Models were built using the one-out method for cross-validation. Multivariate analyses showed that metabolic profiles partially separated responders and non-responders to sertraline or to placebo. For the sertraline models, the overall correct classification rate was 81% whereas it was 72% for the placebo models. Several pathways were implicated in separation of responders and non-responders on sertraline and on placebo including phenylalanine, tryptophan, purine and tocopherol. Dihydroxyphenylacetic acid, tocopherols and serotonin were common metabolites in separating responders and non-responders to both drug and placebo. Pretreatment metabotypes may predict which depressed patients will respond to acute treatment (4 weeks) with sertraline or placebo. Some pathways were informative for both treatments whereas other pathways were unique in predicting response to either sertraline or placebo. Metabolomics may inform the biochemical basis for the early efficacy of sertraline.


Biological Psychiatry | 2007

Significant support for DAO as a schizophrenia susceptibility locus : Examination of five genes putatively associated with schizophrenia

Linda S. Wood; Eve H. Pickering; Bryan M. DeChairo

BACKGROUND Schizophrenia is a complex psychiatric disorder with a strong genetic component. Past linkage studies have implicated several chromosomal regions in the etiology of schizophrenia. Within these regions, several genes have been identified via candidate gene association studies as strong schizophrenia susceptibility loci, including DAO, DAOA, DISC1, DTNBP1, and RGS4. METHODS The present study attempted to replicate these association findings by analyzing a total of 120 markers across these genes in 311 schizophrenia subjects, 140 schizoaffective subjects, and 291 control subjects. RESULTS Our study found no association for DAOA and DTNBP1 with schizophrenia. Although no association was seen with DAOA and DTNBP1, several other markers in the other genes resulted in significant association with schizophrenia (p < .05). However, after a conservative Bonferroni correction for multiple testing, only one marker, rs3918346, within DAO remained significant (odds ratio = 1.71, confidence interval = 1.32-2.22, p = 4 x 10(-5)). This significant association was concordant with previous DAO genetic findings. CONCLUSIONS Our results significantly support DAO as a susceptibility locus for schizophrenia and offer some support for the implication of both RGS4 and DISC1 in the etiology of schizophrenia. However, we see no evidence to support either DAOA or DTNBP1 as schizophrenia disease loci.


Translational Psychiatry | 2013

Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo

Rima Kaddurah-Daouk; Mikhail B. Bogdanov; William R. Wikoff; Hongjie Zhu; Stephen H. Boyle; Erik Churchill; Zhi Wang; A J Rush; Ranga R. Krishnan; Eve H. Pickering; Marielle Delnomdedieu; Oliver Fiehn

In this study, we characterized early biochemical changes associated with sertraline and placebo administration and changes associated with a reduction in depressive symptoms in patients with major depressive disorder (MDD). MDD patients received sertraline or placebo in a double-blind 4-week trial; baseline, 1 week, and 4 weeks serum samples were profiled using a gas chromatography time of flight mass spectrometry metabolomics platform. Intermediates of TCA and urea cycles, fatty acids and intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were changed after 1 and 4 weeks of treatment. Some of the changes were common to the sertraline- and placebo-treated groups. Changes after 4 weeks of treatment in both groups were more extensive. Pathway analysis in the sertraline group suggested an effect of drug on ABC and solute transporters, fatty acid receptors and transporters, G signaling molecules and regulation of lipid metabolism. Correlation between biochemical changes and treatment outcomes in the sertraline group suggested a strong association with changes in levels of branched chain amino acids (BCAAs), lower BCAAs levels correlated with better treatment outcomes; pathway analysis in this group revealed that methionine and tyrosine correlated with BCAAs. Lower levels of lactic acid, higher levels of TCA/urea cycle intermediates, and 3-hydroxybutanoic acid correlated with better treatment outcomes in placebo group. Results of this study indicate that biochemical changes induced by drug continue to evolve over 4 weeks of treatment and that might explain partially delayed response. Response to drug and response to placebo share common pathways but some pathways are more affected by drug treatment. BCAAs seem to be implicated in mechanisms of recovery from a depressed state following sertraline treatment.


PLOS Genetics | 2014

Genome-Wide Association Study of CSF Levels of 59 Alzheimer's Disease Candidate Proteins: Significant Associations with Proteins Involved in Amyloid Processing and Inflammation

John Kauwe; Matthew Bailey; Perry G. Ridge; Rachel Perry; Mark E. Wadsworth; Kaitlyn L. Hoyt; Lyndsay A. Staley; Celeste M. Karch; Oscar Harari; Carlos Cruchaga; Benjamin J. Ainscough; Kelly R. Bales; Eve H. Pickering; Sarah Bertelsen; Anne M. Fagan; David M. Holtzman; John C. Morris; Alison Goate

Cerebrospinal fluid (CSF) 42 amino acid species of amyloid beta (Aβ42) and tau levels are strongly correlated with the presence of Alzheimers disease (AD) neuropathology including amyloid plaques and neurodegeneration and have been successfully used as endophenotypes for genetic studies of AD. Additional CSF analytes may also serve as useful endophenotypes that capture other aspects of AD pathophysiology. Here we have conducted a genome-wide association study of CSF levels of 59 AD-related analytes. All analytes were measured using the Rules Based Medicine Human DiscoveryMAP Panel, which includes analytes relevant to several disease-related processes. Data from two independently collected and measured datasets, the Knight Alzheimers Disease Research Center (ADRC) and Alzheimers Disease Neuroimaging Initiative (ADNI), were analyzed separately, and combined results were obtained using meta-analysis. We identified genetic associations with CSF levels of 5 proteins (Angiotensin-converting enzyme (ACE), Chemokine (C-C motif) ligand 2 (CCL2), Chemokine (C-C motif) ligand 4 (CCL4), Interleukin 6 receptor (IL6R) and Matrix metalloproteinase-3 (MMP3)) with study-wide significant p-values (p<1.46×10−10) and significant, consistent evidence for association in both the Knight ADRC and the ADNI samples. These proteins are involved in amyloid processing and pro-inflammatory signaling. SNPs associated with ACE, IL6R and MMP3 protein levels are located within the coding regions of the corresponding structural gene. The SNPs associated with CSF levels of CCL4 and CCL2 are located in known chemokine binding proteins. The genetic associations reported here are novel and suggest mechanisms for genetic control of CSF and plasma levels of these disease-related proteins. Significant SNPs in ACE and MMP3 also showed association with AD risk. Our findings suggest that these proteins/pathways may be valuable therapeutic targets for AD. Robust associations in cognitively normal individuals suggest that these SNPs also influence regulation of these proteins more generally and may therefore be relevant to other diseases.


PLOS ONE | 2013

Pharmacometabolomics of Response to Sertraline and to Placebo in Major Depressive Disorder – Possible Role for Methoxyindole Pathway

Hongjie Zhu; Mikhail B. Bogdanov; Stephen H. Boyle; Wayne R. Matson; Swati Sharma; Samantha Matson; Erik Churchill; Oliver Fiehn; John A. Rush; Ranga R. Krishnan; Eve H. Pickering; Marielle Delnomdedieu; Rima Kaddurah-Daouk

Therapeutic response to selective serotonin (5-HT) reuptake inhibitors in Major Depressive Disorder (MDD) varies considerably among patients, and the onset of antidepressant therapeutic action is delayed until after 2 to 4 weeks of treatment. The objective of this study was to analyze changes within methoxyindole and kynurenine (KYN) branches of tryptophan pathway to determine whether differential regulation within these branches may contribute to mechanism of variation in response to treatment. Metabolomics approach was used to characterize early biochemical changes in tryptophan pathway and correlated biochemical changes with treatment outcome. Outpatients with MDD were randomly assigned to sertraline (n = 35) or placebo (n = 40) in a double-blind 4-week trial; response to treatment was measured using the 17-item Hamilton Rating Scale for Depression (HAMD17). Targeted electrochemistry based metabolomic platform (LCECA) was used to profile serum samples from MDD patients. The response rate was slightly higher for sertraline than for placebo (21/35 [60%] vs. 20/40 [50%], respectively, χ2(1)  = 0.75, p = 0.39). Patients showing a good response to sertraline had higher pretreatment levels of 5-methoxytryptamine (5-MTPM), greater reduction in 5-MTPM levels after treatment, an increase in 5-Methoxytryptophol (5-MTPOL) and Melatonin (MEL) levels, and decreases in the (KYN)/MEL and 3-Hydroxykynurenine (3-OHKY)/MEL ratios post-treatment compared to pretreatment. These changes were not seen in the patients showing poor response to sertraline. In the placebo group, more favorable treatment outcome was associated with increases in 5-MTPOL and MEL levels and significant decreases in the KYN/MEL and 3-OHKY/MEL; changes in 5-MTPM levels were not associated with the 4-week response. These results suggest that recovery from a depressed state due to treatment with drug or with placebo could be associated with preferential utilization of serotonin for production of melatonin and 5-MTPOL.


Chest | 2007

Sources of Long-term Variability in Measurements of Lung Function: Implications for Interpretation and Clinical Trial Design

Robert L. Jensen; John G. Teeter; Richard D. England; Heather M. Howell; Heather J. White; Eve H. Pickering; Robert O. Crapo

BACKGROUND The objective of the study was to characterize the biological and technical components of variability associated with longitudinal measurements of FEV(1) and carbon monoxide diffusing capacity (Dlco). Variability was apportioned to subject and instrument for five commercially available pulmonary function testing (PFT) systems: Collins CPL (Ferraris Respiratory; Louisville, CO); Morgan Transflow Test PFT System (Morgan Scientific; Haverhill, MA); SensorMedics Vmax 22D (VIASYS Healthcare; Yorba Linda, CA); Jaeger USA Masterscreen Diffusion TP (VIASYS Healthcare; Yorba Linda, CA); and Medical Graphics Profiler DX System (Medical Graphics Corporation; St. Paul, MN). METHODS This was a randomized, replicated cross-over, single-center methodology study in 11 healthy subjects aged 20 to 65 years. Spirometry and Dlco measurements were performed at baseline, 3 months, and 6 months. Repetitive simulations of FEV(1) and Dlco were performed on the same instruments on four occasions over a 90-day period using a spirometry waveform generator and a Dlco simulator. RESULTS The coefficient of variation associated with repetitive measurements of FEV(1) or Dlco in subjects was consistently larger than that associated with repetitive simulated waveforms across the five instruments. Instrumentation accounted for 13 to 58% of the total FEV(1) and 36 to 70% of the total Dlco variability observed in subjects. Sample size estimates of hypothetical studies designed to detect treatment group differences of 0.050 L in FEV(1) and 0.5 mL/min/mm Hg in Dlco varied as much as four times depending on the instrument utilized. CONCLUSIONS These results provide a semiquantitative assessment of the biological and technical components of PFT variability in a highly standardized setting. They illustrate how instrument choice and test variability can impact sample size determinations in clinical studies that use FEV(1) and Dlco as end points.

Collaboration


Dive into the Eve H. Pickering's collaboration.

Top Co-Authors

Avatar

David M. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John C. Morris

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Carlos Cruchaga

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Kauwe

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Leslie M. Shaw

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Sarah Bertelsen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Alison Goate

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge