Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Calef is active.

Publication


Featured researches published by F. Calef.


Science | 2014

A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars

John P. Grotzinger; Dawn Y. Sumner; L. C. Kah; K. Stack; S. Gupta; Lauren A. Edgar; David M. Rubin; Kevin W. Lewis; Juergen Schieber; N. Mangold; Ralph E. Milliken; P. G. Conrad; David J. DesMarais; Jack D. Farmer; K. L. Siebach; F. Calef; Joel A. Hurowitz; Scott M. McLennan; D. Ming; D. T. Vaniman; Joy A. Crisp; Ashwin R. Vasavada; Kenneth S. Edgett; M. C. Malin; D. Blake; R. Gellert; Paul R. Mahaffy; Roger C. Wiens; Sylvestre Maurice; J. A. Grant

The Curiosity rover discovered fine-grained sedimentary rocks, which are inferred to represent an ancient lake and preserve evidence of an environment that would have been suited to support a martian biosphere founded on chemolithoautotrophy. This aqueous environment was characterized by neutral pH, low salinity, and variable redox states of both iron and sulfur species. Carbon, hydrogen, oxygen, sulfur, nitrogen, and phosphorus were measured directly as key biogenic elements; by inference, phosphorus is assumed to have been available. The environment probably had a minimum duration of hundreds to tens of thousands of years. These results highlight the biological viability of fluvial-lacustrine environments in the post-Noachian history of Mars.


Science | 2014

Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars.

Scott M. McLennan; R. B. Anderson; James F. Bell; John C. Bridges; F. Calef; John Campbell; B. C. Clark; S. M. Clegg; P. G. Conrad; A. Cousin; D. J. Des Marais; Gilles Dromart; M. D. Dyar; Lauren A. Edgar; Bethany L. Ehlmann; Claude Fabre; O. Forni; O. Gasnault; R. Gellert; S. Gordon; A. Grant; John P. Grotzinger; S. Gupta; K. E. Herkenhoff; J. A. Hurowitz; Penelope L. King; S. Le Mouélic; L. A. Leshin; R. Leveille; Kevin W. Lewis

Sedimentary rocks examined by the Curiosity rover at Yellowknife Bay, Mars, were derived from sources that evolved from an approximately average martian crustal composition to one influenced by alkaline basalts. No evidence of chemical weathering is preserved, indicating arid, possibly cold, paleoclimates and rapid erosion and deposition. The absence of predicted geochemical variations indicates that magnetite and phyllosilicates formed by diagenesis under low-temperature, circumneutral pH, rock-dominated aqueous conditions. Analyses of diagenetic features (including concretions, raised ridges, and fractures) at high spatial resolution indicate that they are composed of iron- and halogen-rich components, magnesium-iron-chlorine–rich components, and hydrated calcium sulfates, respectively. Composition of a cross-cutting dike-like feature is consistent with sedimentary intrusion. The geochemistry of these sedimentary rocks provides further evidence for diverse depositional and diagenetic sedimentary environments during the early history of Mars.


Science | 2015

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

John P. Grotzinger; Sanjeev Gupta; M. C. Malin; David M. Rubin; Juergen Schieber; K. L. Siebach; Dawn Y. Sumner; Kathryn M. Stack; Ashwin R. Vasavada; Raymond E. Arvidson; F. Calef; Lauren Edgar; W.F. Fischer; J. A. Grant; J. L. Griffes; L. C. Kah; Michael P. Lamb; Kevin W. Lewis; N. Mangold; M. E. Minitti; Marisa C. Palucis; Melissa S. Rice; Rebecca M. E. Williams; R. A. Yingst; D. Blake; Diana L. Blaney; P. G. Conrad; Joy A. Crisp; William E. Dietrich; Gilles Dromart

Ancient lake system at Gale crater Since 2012, the Curiosity rover has been diligently studying rocky outcrops on Mars, looking for clues about past water, climate, and habitability. Grotzinger et al. describe the analysis of a huge section of sedimentary rocks near Gale crater, where Mount Sharp now stands (see the Perspective by Chan). The features within these sediments are reminiscent of delta, stream, and lake deposits on Earth. Although individual lakes were probably transient, it is likely that there was enough water to fill in low-lying depressions such as impact craters for up to 10,000 years. Wind-driven erosion removed many of these deposits, creating Mount Sharp. Science, this issue p.10.1126/science.aac7575, see also p. 167 Mount Sharp now stands where there was once a large intercrater lake system. [Also see Perspective by Chan] INTRODUCTION Remote observational data suggest that large bodies of standing water existed on the surface of Mars in its early history. This would have required a much wetter climate than that of the present, implying greater availability of water on a global basis and enhanced potential for global habitability. However, based on assumptions of a vast water inventory and models of atmospheric erosion, theoretical studies suggest a climate that was wetter but not by enough to sustain large lakes, even in depressions such as impact craters. RATIONALE The Mars Science Laboratory mission’s rover, Curiosity, provides the capability to test hypotheses about Mars’s past climate. The focus of the mission is the exploration of a ~5-km-high mountain, Aeolis Mons (informally known as Mount Sharp), located near the center of the ~140-km-wide Gale impact crater. Mount Sharp is underlain by hundreds of meters of sedimentary rock strata deposited ~3.6 billion to 3.2 billion years ago. These sediments accumulated in aqueous environments, recording the history of Mars’s ancient climate. Because of Curiosity’s ability to study these strata where they are exposed near the base of Mount Sharp, we can directly test the hypothesis that large impact craters were capable of accumulating and storing water as lakes for substantial periods of time. RESULTS Over the course of 2 years, Curiosity studied dozens of outcrops distributed along a ~9-km transect that also rose ~75 m in elevation. Image data were used to measure the geometry and grain sizes of strata and to survey the textures associated with sediment deposition and diagenesis. Erosion of Gale’s northern crater wall and rim generated gravel and sand that were transported southward in shallow streams. Over time, these stream deposits advanced toward the crater interior, transitioning downstream into finer-grained (sand-sized), southward-advancing delta deposits. These deltas marked the boundary of an ancient lake where the finest (mud-sized) sediments accumulated, infilling both the crater and its internal lake basin. After infilling of the crater, the sedimentary deposits in Gale crater were exhumed, probably by wind-driven erosion, creating Mount Sharp. The ancient stream and lake deposits are erosional remnants of superimposed depositional sequences that once extended at least 75 m, and perhaps several hundreds of meters, above the current elevation of the crater floor. Although the modern landscape dips northward away from Mount Sharp, the ancient sedimentary deposits were laid down along a profile that projected southward beneath Mount Sharp and indicate that a basin once existed where today there is a mountain. CONCLUSION Our observations suggest that individual lakes were stable on the ancient surface of Mars for 100 to 10,000 years, a minimum duration when each lake was stable both thermally (as liquid water) and in terms of mass balance (with inputs effectively matching evaporation and loss of water to colder regions). We estimate that the stratigraphy traversed thus far by Curiosity would have required 10,000 to 10,000,000 years to accumulate, and even longer if overlying strata are included. Though individual lakes may have come and gone, they were probably linked in time through a common groundwater table. Over the long term, this water table must have risen at least tens of meters to enable accumulation of the delta and lake deposits observed by Curiosity in Gale crater. Inclined strata in the foreground dip southward toward Mount Sharp and represent ancient delta deposits. These deposits transition into strata in the mid-field that were deposited in ancient lakes. The buttes and mesas in the background contain younger deposits that overlie and postdate the lake deposits beneath Mount Sharp. The outcrop in the foreground is about 6 m wide, and the buttes and mesas in the background are hundreds of meters wide and tens of meters high. The image has been white-balanced. [Credit: NASA/Caltech/JPL/MSSS] The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).


Science | 2014

In situ radiometric and exposure age dating of the martian surface.

Kenneth A. Farley; C. A. Malespin; Paul R. Mahaffy; John P. Grotzinger; Paulo M. Vasconcelos; Ralph E. Milliken; M. C. Malin; Kenneth S. Edgett; A. A. Pavlov; Joel A. Hurowitz; J. A. Grant; Hayden Miller; Raymond E. Arvidson; L. Beegle; F. Calef; P. G. Conrad; William E. Dietrich; Jennifer L. Eigenbrode; R. Gellert; Sanjeev Gupta; Victoria E. Hamilton; D. M. Hassler; Kevin W. Lewis; Scott M. McLennan; D. Ming; Rafael Navarro-González; S. P. Schwenzer; Andrew Steele; Edward M. Stolper; Dawn Y. Sumner

We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 ± 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray–produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 ± 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.


Science | 2012

Ancient Impact and Aqueous Processes at Endeavour Crater, Mars

Steven W. Squyres; Raymond E. Arvidson; James F. Bell; F. Calef; B. C. Clark; Barbara A. Cohen; L.A. Crumpler; P. A. de Souza; William H. Farrand; Ralf Gellert; J. A. Grant; K. E. Herkenhoff; Joel A. Hurowitz; Jeffrey R. Johnson; Bradley L. Jolliff; Andrew H. Knoll; R. Li; Scott M. McLennan; D. W. Ming; D. W. Mittlefehldt; T. J. Parker; G. Paulsen; Melissa S. Rice; Steven W. Ruff; Christian Schröder; Albert S. Yen; K. Zacny

Martian Veins After more than 7 years of traveling across the Meridiani Planum region of Mars, the Mars Exploration rover Opportunity reached the Endeavour Crater, a 22-km-impact crater made of materials older than those previously investigated by the rover. Squyres et al. (p. 570) present a comprehensive analysis of the rim of this crater. Localized zinc enrichments that provide evidence for hydrothermal alteration and gypsum-rich veins that were precipitated from liquid water at a relatively low temperature provide a compelling case for aqueous alteration processes in this area at ancient times. Analysis of data from the Mars Exploration Rover Opportunity provides evidence for past water flow near an ancient crater. The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.


Journal of Geophysical Research | 2014

Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile‐rich igneous source

Mariek E. Schmidt; John Campbell; R. Gellert; Glynis M. Perrett; A. H. Treiman; Diana L. Blaney; A. Olilla; F. Calef; Lauren A. Edgar; Beverley E. Elliott; John P. Grotzinger; Joel A. Hurowitz; Penelope L. King; M. E. Minitti; Violaine Sautter; Kathryn M. Stack; Jeff A. Berger; John C. Bridges; Bethany L. Ehlmann; O. Forni; L. A. Leshin; Kevin W. Lewis; S. M. McLennan; D. W. Ming; H. Newsom; Irina Pradler; S. W. Squyres; Edward M. Stolper; Lucy M. Thompson; Scott J. V. VanBommel

The first four rocks examined by the Mars Science Laboratory Alpha Particle X-ray Spectrometer indicate that Curiosity landed in a lithologically diverse region of Mars. These rocks, collectively dubbed the Bradbury assemblage, were studied along an eastward traverse (sols 46–102). Compositions range from Na- and Al-rich mugearite Jake_Matijevic to Fe-, Mg-, and Zn-rich alkali-rich basalt/hawaiite Bathurst_Inlet and span nearly the entire range in FeO* and MnO of the data sets from previous Martian missions and Martian meteorites. The Bradbury assemblage is also enriched in K and moderately volatile metals (Zn and Ge). These elements do not correlate with Cl or S, suggesting that they are associated with the rocks themselves and not with salt-rich coatings. Three out of the four Bradbury rocks plot along a line in elemental variation diagrams, suggesting mixing between Al-rich and Fe-rich components. ChemCam analyses give insight to their degree of chemical heterogeneity and grain size. Variations in trace elements detected by ChemCam suggest chemical weathering (Li) and concentration in mineral phases (e.g., Rb and Sr in feldspars). We interpret the Bradbury assemblage to be broadly volcanic and/or volcaniclastic, derived either from near the Gale crater rim and transported by the Peace Vallis fan network, or from a local volcanic source within Gale Crater. High Fe and Fe/Mn in Et_Then likely reflect secondary precipitation of Fe^(3+) oxides as a cement or rind. The K-rich signature of the Bradbury assemblage, if igneous in origin, may have formed by small degrees of partial melting of metasomatized mantle.


Journal of Geophysical Research | 2014

The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars

Marisa C. Palucis; William E. Dietrich; Alexander G. Hayes; Rebecca M. E. Williams; Sanjeev Gupta; N. Mangold; Horton E. Newsom; Craig Hardgrove; F. Calef; Dawn Y. Sumner

The landing site for the Curiosity rover is located at the distal end of the Peace Vallis fan in Gale Crater. Peace Vallis fan covers 80 km2 and is fed by a 730 km2 catchment, which drains an upland plains area through a 15 km wide gap in the crater rim. Valley incision into accumulated debris delivered sediment through a relatively low density valley network to a main stem channel to the fan. An estimated total fan volume of 0.9 km3 matches the calculated volume of removal due to valley incision (0.8 km3) and indicates a mean thickness of 9 m. The fan profile is weakly concave up with a mean slope of 1.5% for the lower portion. Numerous inverted channels outcrop on the western surface of the fan, but on the eastern portion such channels are rare suggesting a change in process from distributary channel domination on the west to sheet flow on the eastern portion of the fan. Runoff (discharge/watershed area) to produce the fan is estimated to be more than 600 m, perhaps as much as 6000 m, indicating a hydrologic cycle that likely lasted at least thousands of years. Atmospheric precipitation (possibly snow) not seepage produced the runoff. Based on topographic data, Peace Vallis fan likely onlapped Bradbury Rise and spilled into a topographic low to the east of the rise. This argues that the light-toned fractured terrain within this topographic low corresponds to the distal deposits of Peace Vallis fan, and in such a setting, lacustrine deposits are expected.


Journal of Geophysical Research | 2014

Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond

Ashwin R. Vasavada; John P. Grotzinger; Raymond E. Arvidson; F. Calef; Joy A. Crisp; Sanjeev Gupta; Joel A. Hurowitz; N. Mangold; Sylvestre Maurice; Mariek E. Schmidt; Roger C. Wiens; Rebecca M. E. Williams; R. A. Yingst

The Mars Science Laboratory mission reached Bradbury Landing in August 2012. In its first 500 sols, the rover Curiosity was commissioned and began its investigation of the habitability of past and present environments within Gale Crater. Curiosity traversed eastward toward Glenelg, investigating a boulder with a highly alkaline basaltic composition, encountering numerous exposures of outcropping pebble conglomerate, and sampling aeolian sediment at Rocknest and lacustrine mudstones at Yellowknife Bay. On sol 324, the mission turned its focus southwest, beginning a year-long journey to the lower reaches of Mt. Sharp, with brief stops at the Darwin and Cooperstown waypoints. The unprecedented complexity of the rover and payload systems posed challenges to science operations, as did a number of anomalies. Operational processes were revised to include additional opportunities for advance planning by the science and engineering teams.


Geophysical Research Letters | 2014

The timing of alluvial activity in Gale crater, Mars

John A. Grant; Sharon A. Wilson; Nicolas Mangold; F. Calef; John P. Grotzinger

The Curiosity rovers discovery of rocks preserving evidence of past habitable conditions in Gale crater highlights the importance of constraining the timing of responsible depositional settings to understand the astrobiological implications for Mars. Crater statistics and mapping reveal the bulk of the alluvial deposits in Gale, including those interrogated by Curiosity, were likely emplaced during the Hesperian, thereby implying that habitable conditions persisted after the Noachian. Crater counting data sets and upper Peace Vallis fan morphology also suggest a possible younger period of fluvial activation that deposited ~10–20 m of sediments on the upper fan after emplacement of the main body of the fan. If validated, water associated with later alluvial activity may have contributed to secondary diagenetic features in Yellowknife Bay.


Journal of Geophysical Research | 2017

Evolved gas analyses of sedimentary rocks and eolian sediment in Gale Crater, Mars: Results of the Curiosity rover's sample analysis at Mars instrument from Yellowknife Bay to the Namib Dune

Brad Sutter; A. C. McAdam; Paul R. Mahaffy; D. W. Ming; Kenneth S. Edgett; E. B. Rampe; Jennifer L. Eigenbrode; Heather B. Franz; C. Freissinet; John P. Grotzinger; Andrew Steele; Christopher H. House; P. D. Archer; C. A. Malespin; Rafael Navarro-González; J. C. Stern; James F. Bell; F. Calef; R. Gellert; D. P. Glavin; Lucy M. Thompson; Albert S. Yen

The Sample Analysis at Mars instrument evolved gas analyzer (SAM-EGA) has detected evolved water, H2, SO2, H2S, NO, CO2, CO, O2 and HCl from two eolian sediments and nine sedimentary rocks from Gale Crater, Mars. These evolved gas detections indicate nitrates, organics, oxychlorine phase, and sulfates are widespread with phyllosilicates and carbonates occurring in select Gale Crater materials. Coevolved CO2 (160 ± 248 - 2373 ± 820 μgC(CO2)/g), and CO (11 ± 3 - 320 ± 130 μgC(CO)/g) suggest organic-C is present in Gale Crater materials. Five samples evolved CO2 at temperatures consistent with carbonate (0.32± 0.05 - 0.70± 0.1 wt.% CO3). Evolved NO amounts to 0.002 ± 0.007 - 0.06 ± 0.03 wt.% NO3. Evolution of O2 suggests oxychlorine phases (chlorate/perchlorate) (0.05 ± 0.025 - 1.05 ± 0.44wt. % ClO4) are present while SO2 evolution indicates the presence of crystalline and/or poorly crystalline Fe- and Mg-sulfate and possibly sulfide. Evolved H2O (0.9 ± 0.3 - 2.5 ± 1.6 wt.% H2O) is consistent with the presence of adsorbed water, hydrated salts, interlayer/structural water from phyllosilicates, and possible inclusion water in mineral/amorphous phases. Evolved H2 and H2S suggest reduced phases occur despite the presence of oxidized phases (nitrate, oxychlorine, sulfate, carbonate). SAM results coupled with CheMin mineralogical and APXS elemental analyses indicate that Gale Crater sedimentary rocks have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic-C to support a small microbial population.

Collaboration


Dive into the F. Calef's collaboration.

Top Co-Authors

Avatar

John P. Grotzinger

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Roger C. Wiens

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana L. Blaney

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melissa S. Rice

Western Washington University

View shared research outputs
Top Co-Authors

Avatar

N. Lanza

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

A. Cousin

University of Toulouse

View shared research outputs
Researchain Logo
Decentralizing Knowledge