F. de Carlos
University of Oviedo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. de Carlos.
Molecular and Cellular Biochemistry | 2007
Pablo Perez-Pinera; T. Hernandez; Olivia García-Suárez; F. de Carlos; A. Germanà; M. E. Del Valle; Aurora Astudillo; J.A. Vega
The neurotrophin family of growth factors and their receptors support the survival of several neuronal and non-neuronal cell populations during embryonic development and adult life. Neurotrophins are also involved in malignant transformation. To seek the role of neurotrophin signaling in human lung cancer we studied the expression of neurotrophin receptors in human lung adenocarcinomas and investigated the effect of the neurotrophin receptor inhibitor K252a in A549 cell survival and colony formation ability in soft agar. We showed that human lung adenocarcinomas express TrkA and TrkB, but not TrkC; A549 cells, derived from a human lung adenocarcinoma, express mRNA transcripts encoding nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), TrkA, TrkB, and p75, and high protein levels of TrkA and TrkB. Stimulation of cells using NGF or BDNF activates the anti-apoptotic protein Akt. Interestingly, inhibition of neurotrophin receptor signaling using K252a prevents Akt activation in response to NGF or BDNF, induces apoptotic cell death, and diminishes the ability of A549 cells to growth in soft agar. The data suggest that neurotrophin signaling inhibition using k252a may be a valid therapy to treat patients with lung adenocarcinomas.
Neuroscience Letters | 2008
Pablo Perez-Pinera; Olivia García-Suárez; A. Germanà; Belén Díaz-Esnal; F. de Carlos; I. Silos-Santiago; M. E. Del Valle; J. Cobo; J.A. Vega
The sensory deficit in TrkB deficient mice was evaluated by counting the neuronal loss in lumbar dorsal root ganglia (DRG), the absence of sensory receptors (cutaneous--associated to the hairy and glabrous skin - muscular and articular), and the percentage and size of the neurocalcin-positive DRG neurons (a calcium-binding protein which labels proprioceptive and mechanoceptive neurons). Mice lacking TrkB lost 32% of neurons, corresponding to the intermediate-sized and neurocalcin-positive ones. This neuronal lost was accomplished by the absence of Meissner corpuscles, and reduction of hair follicle-associated sensory nerve endings and Merkel cells. The mutation was without effect on Pacinian corpuscles, Golgis organs and muscle spindles. Present results further characterize the sensory deficit of the TrkB-/- mice demonstrating that the intermediate-sized neurons in lumbar DRG, as well as the cutaneous rapidly and slowly adapting sensory receptors connected to them, are under the control of TrkB for survival and differentiation. This study might serve as a baseline for future studies in experimentally induced neuropathies affecting TrkB positive DRG neurons and their peripheral targets, and to use TrkB ligands in the treatment of neuropathies in which cutaneous mechanoreceptors are primarily involved.
Anatomia Histologia Embryologia | 2006
F. Abbate; G. Germanà; F. de Carlos; G. Montalbano; R. Laurà; M. Levanti; A. Germanà
The zebrafish is a common model for developmental studies including those regarding tooth, palate and tongue. Nevertheless, little information is available about the morphology of the oral cavity in this teleost, especially in adult animals. In this study we used light, scanning and transmission electron microscopy to describe in detail the morphology of the oral cavity of adult zebrafish. The oral cavity could be divided into three different zones: the outer containing the lips, the intermediate corresponding to the internal valves and the internal that corresponds to the tongue. In the upper and lower intermediate zones, there were semilunar shaped valves, more prominent in the upper part. The internal lower zones correspond to the palate and the tongue, which is an individualized structure filled with numerous transversal ridges. Both the intermediate and internal zones were covered by a stratified epithelium containing numerous mucous and rodlet cells. Present data provide the first description of the morphology and structure of the oral cavity in the adult zebrafish and might serve as a baseline for developmental studies of the oral cavity using this teleost as a model.
Microscopy Research and Technique | 2012
V. Amato; E. Viña; M.G. Calavia; M.C. Guerrera; R. Laurà; Manuel Jimenez Navarro; F. de Carlos; J. Cobo; A. Germanà; J.A. Vega
TRPV4 is a nonselective cation channel that belongs to the vanilloid (V) subfamily of transient receptor potential (TRP) ion channels. While TRP channels have been found to be involved in sensing temperature, light, pressure, and chemical stimuli, TPRV4 is believed to be primarily a mechanosensor although it can also respond to warm temperatures, acidic pH, and several chemical compounds. In zebrafish, the expression of trpv4 has been studied during embryonic development, whereas its pattern of TPRV4 expression during the adult life has not been thoroughly analyzed. In this study, the occurrence of TRPV4 was addressed in the zebrafish sensory organs at the mRNA (RT‐PCR) and protein (Westernblot) levels. Once the occurrence of TRPV4 was demonstrated, the TRPV4 positive cells were identified by using immunohistochemistry. TPRV4 was detected in mantle and sensory cells of neuromasts, in a subpopulation of hair sensory cells in the macula and in the cristae ampullaris of the inner ear, in sensory cells in the taste buds, in crypt neurons and ciliated sensory neurons of the olfactory epithelium, and in cells of the retina. These results demonstrate the presence of TRPV4 in all sensory organs of adult zebrafish and are consistent with the multiple physiological functions suspected for TRPV4 in mammals (mechanosensation, hearing, and temperature sensing), but furthermore suggest potential roles in olfaction and vision in zebrafish. Microsc. Res. Tech., 2012.
Neuroscience Letters | 2010
M.G. Calavia; J. Feito; L. López-Iglesias; F. de Carlos; Olivia García-Suárez; Pablo Perez-Pinera; J. Cobo; J.A. Vega
Cutaneous Meissner corpuscles depend for development and survival exclusively on the NT system TrkB/BDNF/NT-4 unlike other types of sensory corpuscles and nerve endings, which have very complex neuronal and growth factor dependence. However, the pattern of expression of TrkB in human Meissner corpuscles is not known. The experiments in these studies were designed to pursue further findings that suggest that BDNF and NT-4 have critical roles in the development and maintenance of Meissner corpuscles by analyzing the pattern of expression of TrkB, their high-affinity receptor, in human glabrous skin. These experiments showed that TrkB is expressed in different patterns by the lamellar cells of Meissner corpuscles and not by the axon. The studies also show that while the percentage of Meissner corpuscles that express TrkB remains constant from birth till 50-year old cases, it decreases approximately 3-fold in subjects older than 50 years. These results are important since the study of Meissner corpuscles from cutaneous biopsies to diagnose some neurological diseases has rapidly become of high interest and therefore the proteins expressed in these corpuscles are potential diagnostic tools.
Neuroscience Letters | 2006
F. de Carlos; J. Cobo; G. Germanà; I. Silos-Santiago; R. Laurà; J.J. Haro; Isabel Fariñas; J.A. Vega
Pacinian corpuscles depend on either Aalpha or Abeta nerve fibers of the large- and intermediate-sized sensory neurons for the development and maintenance of the structural integrity. These neurons express TrkB and TrkC, two members of the family of signal transducing neurotrophin receptors, and mice lacking TrkB and TrkC lost specific neurons and the sensory corpuscles connected to them. The impact of single or double targeted mutations in trkB and trkC genes in the development of Pacinian corpuscles was investigated in 25-day-old mice using immunohistochemistry and ultrastructural techniques. Single mutations on trkB or trkC genes were without effect on the structure and S100 protein expression, and caused a slight reduction in the number of corpuscles. In mice carrying a double mutation on trkB;trkC genes most of the corpuscles were normal with a reduction of 17% in trkB-/-;trkC+/- mice, and 8% in trkB +/-;trkC -/- mice. Furthermore, a subset of the remaining Pacinian corpuscles (23% in trkB-/-;trkC+/- mice; 3% in trkB+/-;trkC-/- mice) were hypoplasic or atrophic. Present results strongly suggest that the development of a subset of murine Pacinian corpuscles is regulated by the Trk-neurotrophin system, especially TrkB, acting both at neuronal and/or peripheral level. The precise function of each member of this complex in the corpuscular morphogenesis remains to be elucidated, though.
Neuroscience Letters | 2004
A. Germanà; F. Abbate; T. González-Martínez; M. E. Del Valle; F. de Carlos; G. Germanà; J.A. Vega
The neuromast of the lateral line system of zebrafish has become an ideal model for the study of both developmental genetics and the vertebrate auditory system. Interestingly, the hair cells of this system have been found to selectively display immunoreactivity for S100 protein in some teleosts. In order to provide a selective marker for the sensory cells of the lateral line system, we have analyzed immunohistochemically the expression of S100 protein in zebrafish from the larval to the adult stage. In larval and adult animals S100 protein immunoreactivity was detected restricted to the hair cells of both superficial and canal neuromasts. Apparently the expression of S100 protein by hair cells was independent of the age, but it was expressed heterogeneously in the hair cells of canal neuromasts. The results of this work provide a feasible method to easily identify sensory cells in the neuromasts, and may be of interest in studies regarding development, differentiation or turnover of hair cells.
Neuroscience Letters | 2009
A. Germanà; G. Montalbano; M.C. Guerrera; R. Laurà; M. Levanti; F. Abbate; F. de Carlos; J.A. Vega; E. Ciriaco
The Sox-2 is a transcription factor involved in adult neurogenesis in different vertebrate species, including fishes. Sox-2 also participates in growth and renewal on sensory cells in neuromasts of the fish lateral line system, and it is essential for development of taste buds in mammals. Using immunohistochemistry and Western blot we have investigated the occurrence and localization of Sox-2 taste buds and neuromast of zebrafish from 10 days post-fertilization to adult stage (1 year). The antibody used identifies two protein bands with estimated molecular weights of 34 and 37kDa which are consistent with those predicted for Sox-2. Sensory cells in taste buds displayed Sox-2 immunoreactivity at all the ages sampled, whereas in the neuromasts Sox-2 expression was restricted to the basal non-sensory cells. Interestingly Sox-2 immunoreactivity was observed in epithelial cells associated with both taste buds and neuromasts. Present results demonstrate that Sox-2 expressed in taste buds and neuromasts of zebrafish during the whole lifespan. Nevertheless, whereas the role of Sox-2 in taste buds of zebrafish remains to be established, the results in neuromast suggest that Sox-2 could participate in cell renewal of the mechanosensory cells.
Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2013
F. de Carlos; J. Cobo; Emilio Macías; J. Feito; Teresa Cobo; M.G. Calavia; Olivia García-Suárez; J.A. Vega
The coordinate neural regulation of the upper airways muscles is basic to control airway size and resistance. The superior constrictor pharyngeal muscle (SCPM) forms the main part of the lateral and posterior walls of the pharynx and typically is devoid of muscle spindles, the main type of proprioceptor. Because proprioception arising from SCPM is potentially important in the physiology of the upper airways, we have investigated if there are mechanical sensory nerve endings substitute for the muscle spindles. Samples of human pharynx were analyzed using immunohistochemistry associated to general axonic and Schwann cells markers (NSE, PGP 9.5, RT‐97, and S100P), intrafusal muscle fiber markers, and putative mechanical sense proteins (TRPV4 and ASIC2). Different kinds of sensory corpuscles were observed in the pharynx walls (Pacini‐like corpuscles, Ruffini‐like corpuscles, spiral‐wharves nerve structures, and others) which are supplied by sensory nerves and express putative mechanoproteins. No evidence of muscle spindles was observed. The present results demonstrate the occurrence of numerous and different morphotypes of sensory corpuscles/mechanoreceptors in human pharynx that presumably detect mechanical changes in the upper airways and replace muscle spindles for proprioception. Present findings are of potential interest for the knowledge of pathologies of the upper airways with supposed sensory pathogenesis. Anat Rec, 296:1735–1746, 2013.
Neuroscience Letters | 2007
T. González-Martínez; A. Germanà; S. Catania; Teresa Cobo; F.J. Ochoa-Erena; F. de Carlos; Belén Díaz-Esnal; J.A. Vega
Neuregulins and their signaling ErbB receptors play a critical role during the development of the mammalian peripheral nervous system, including some kinds of mechanoreceptors such as the Pacinian corpuscles which become structurally and functionally mature postnatally. In this study, we investigated whether or not ErbBs in Pacinian corpuscles undergoes developmental changes, as well as if their expression depends on the innervation. Pacinian corpuscles from 7-day- and 3-month-old mice were assessed for the immunohistochemical detection of EGFR or ErbB1, ErbB2, ErbB3 and ErbB4. The effect of denervation on the expression of ErbBs in mature Pacinian corpuscles was also analyzed. Developing 7-day-old Pacinian corpuscles express ErbB2 and ErbB3 immunoreactivity in the inner-core (regarded as modified Schwann cells), whereas the mature 3-month-old Pacinian corpuscles exclusively displayed ErbB4 immunoreactivity in the outer core and the capsule (regarded as endoneurial and perineurial cells). Denervation was without effect on the ErbB expression. Present results demonstrate maturational related changes and cell segregation in the expression of ErbB receptors by murine Pacinian corpuscles, and that this expression is independent of the innervation.