F. Flocke
National Center for Atmospheric Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Flocke.
Journal of Geophysical Research | 2007
Rynda C. Hudman; Daniel J. Jacob; Solène Turquety; Eric M. Leibensperger; Lee T. Murray; Shiliang Wu; Alice B. Gilliland; M. Avery; Timothy H. Bertram; William H. Brune; R. C. Cohen; Jack E. Dibb; F. Flocke; Alan Fried; John S. Holloway; J. A. Neuman; Richard E. Orville; A. E. Perring; Xinrong Ren; G. W. Sachse; Hanwant B. Singh; Aaron L. Swanson; P. J. Wooldridge
[1] We use observations from two aircraft during the ICARTT campaign over the eastern United States and North Atlantic during summer 2004, interpreted with a global 3-D model of tropospheric chemistry (GEOS-Chem) to test current understanding of regional sources, chemical evolution, and export of NOx. The boundary layer NOx data provide top-down verification of a 50% decrease in power plant and industry NOx emissions over the eastern United States between 1999 and 2004. Observed NOx concentrations at 8–12 km altitude were 0.55 ± 0.36 ppbv, much larger than in previous U.S. aircraft campaigns (ELCHEM, SUCCESS, SONEX) though consistent with data from the NOXAR program aboard commercial aircraft. We show that regional lightning is the dominant source of this upper tropospheric NOx and increases upper tropospheric ozone by 10 ppbv. Simulating ICARTT upper tropospheric NOx observations with GEOS-Chem requires a factor of 4 increase in modeled NOx yield per flash (to 500 mol/ flash). Observed OH concentrations were a factor of 2 lower than can be explained from current photochemical models, for reasons that are unclear. A NOy-CO correlation analysis of the fraction f of North American NOx emissions vented to the free troposphere as NOy (sum of NOx and its oxidation products) shows observed f = 16 ± 10% and modeled f = 14 ± 9%, consistent with previous studies. Export to the lower free troposphere is mostly HNO3 but at higher altitudes is mostly PAN. The model successfully simulates NOy export efficiency and speciation, supporting previous model estimates of a large U.S. anthropogenic contribution to global tropospheric ozone through PAN export.
Journal of Geophysical Research | 2000
Hanwant B. Singh; Y. Chen; Azadeh Tabazadeh; Yasuo Fukui; Isabelle Bey; Robert M. Yantosca; Daniel J. Jacob; F. Arnold; Karl-Heinz Wohlfrom; Elliot Atlas; F. Flocke; D. R. Blake; Nicola J. Blake; Brian G. Heikes; Julie A. Snow; Robert W. Talbot; G. L. Gregory; G. W. Sachse; S. A. Vay; Yasuyuki Kondo
A large number of oxygenated organic chemicals (peroxyacyl nitrates, alkyl nitrates, acetone, formaldehyde, methanol, methylhydroperoxide, acetic acid and formic acid) were measured during the 1997 Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) airborne field campaign over the Atlantic. In this paper, we present a first picture of the distribution of these oxygenated organic chemicals (Ox-organic) in the troposphere and the lower stratosphere, and assess their source and sink relationships. In both the troposphere and the lower stratosphere, the total atmospheric abundance of these oxygenated species (ΣOx-organic) nearly equals that of total nonmethane hydrocarbons (ΣNMHC), which have been traditionally measured. A sizable fraction of the reactive nitrogen (10–30%) is present in its oxygenated organic form. The organic reactive nitrogen fraction is dominated by peroxyacetyl nitrate (PAN), with alkyl nitrates and peroxypropionyl nitrate (PPN) accounting for <5% of total NOy. Comparison of observations with the predictions of the Harvard three-dimensional global model suggests that in many key areas (e.g., formaldehyde and peroxides) substantial differences between measurements and theory are present and must be resolved. In the case of CH3OH, there appears to be a large mismatch between atmospheric concentrations and estimated sources, indicating the presence of major unknown removal processes. Instrument intercomparisons as well as disagreements between observations and model predictions are used to identify needed improvements in key areas. The atmospheric chemistry and sources of this group of chemicals is poorly understood even though their fate is intricately linked with upper tropospheric NOx and HOx cycles.
Journal of Geophysical Research | 1999
S. Schauffler; Elliot Atlas; D. R. Blake; F. Flocke; R. A. Lueb; Julia Lee-Taylor; V. Stroud; W. Travnicek
A comprehensive suite of brominated organic compounds was measured from whole air samples collected during the 1996 NASA Stratospheric Tracers of Atmospheric Transport aircraft campaign and the 1996 NASA Global Tropospheric Experiment Pacific Exploratory Mission-Tropics aircraft campaign. Measurements of individual species and total organic bromine were utilized to describe latitudinal and vertical distributions in the troposphere and lower stratosphere, fractional contributions to total organic bromine by individual species, fractional dissociation of the long-lived species relative to CFC-11, and the Ozone Depletion Potential of the halons and CH3Br. Spatial differences in the various organic brominated compounds were related to their respective sources and chemical lifetimes. The difference between tropospheric mixing ratios in the Northern and Southern Hemispheres for halons was approximately equivalent to their annual tropospheric growth rates, while the interhemispheric ratio of CH3Br was 1.18. The shorter-lived brominated organic species showed larger tropospheric mixing ratios in the tropics relative to midlatitudes, which may reflect marine biogenic sources. Significant vertical gradients in the troposphere were observed for the short-lived species with upper troposphere values 40–70% of the lower troposphere values. Much smaller vertical gradients (3–14%) were observed for CH3Br, and no significant vertical gradients were observed for the halons. Above the tropopause, the decrease in organic bromine compounds was found to have some seasonal and latitudinal differences. The combined losses of the individual compounds resulted in a loss of total organic bromine between the tropopause and 20 km of 38–40% in the tropics and 75–85% in midlatitudes. The fractional dissociation of the halons and CH3Br relative to CFC-11 showed latitudinal differences, with larger values in the tropics.
Journal of Geophysical Research | 2004
Rynda C. Hudman; Daniel J. Jacob; O. R. Cooper; M. J. Evans; Colette L. Heald; Rokjin J. Park; F. C. Fehsenfeld; F. Flocke; John S. Holloway; G. Hübler; K. Kita; M. Koike; Y. Kondo; Aaron Drake Neuman; Jonathan Andrew Nowak; S. J. Oltmans; D. D. Parrish; James M. Roberts; T. B. Ryerson
[1] We examine the ozone production efficiency in transpacific Asian pollution plumes, and the implications for ozone air quality in California, by using aircraft and surface observations in April–May 2002 from the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) campaign off the California coast and the Pacific Exploration of Asian Continental Emission–B (PEACE-B) campaign over the northwest Pacific. The observations are interpreted with a global three-dimensional chemical transport model (GEOS-CHEM). The model reproduces the mean features observed for CO, reactive nitrogen oxides (NOy), and ozone but underestimates the strong (20 ppbv) stratospheric contribution to ozone in the middle troposphere. The ITCT 2K2 aircraft sampled two major transpacific Asian pollution plumes, one on 5 May at 5–8 km altitude with CO up to 275 ppbv but no elevated ozone and one on 17 May at 2.5–4 km altitude with CO up to 225 ppbv and ozone up to 90 ppbv. We show that the elevated ozone in the latter plume is consistent with production from peroxyacetylnitrate (PAN) decomposition during subsidence of the plume over the northeast Pacific. This production is particularly efficient because of the strong radiation and low humidity of the subsiding environment. We argue that such PAN decomposition represents a major and possibly dominant component of the ozone enhancement in transpacific Asian pollution plumes. Strong dilution of Asian pollution plumes takes place during entrainment in the U.S. boundary layer, greatly reducing their impact at U.S. surface sites. California mountain sites are more sensitive to Asian pollution because of their exposure to the free troposphere. Model results indicate a mean Asian pollution enhancement of 7 ppbv ozone at Sequoia National Park in May 2002 on those days when the 8-hour average ozone concentration exceeded 80 ppbv. INDEX TERMS: 0368 Atmospheric Composition and Structure: Troposphere—constituent transport and chemistry; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); KEYWORDS: ozone, Asian pollution, ITCT 2K2, PEACE-B, transpacific transport
Geophysical Research Letters | 1997
Lyatt Jaeglé; Daniel J. Jacob; Paul O. Wennberg; C. M. Spivakovsky; T. F. Hanisco; E. J. Lanzendorf; E. J. Hintsa; D. W. Fahey; E. R. Keim; M. H. Proffitt; Elliot Atlas; F. Flocke; S. Schauffler; C. T. McElroy; C. Midwinter; Leonhard Pfister; J. C. Wilson
ER-2 aircraft observations of OH and HO_2 concentrations in the upper troposphere during the NASA/STRAT campaign are interpreted using a photochemical model constrained by local observations of O_3, H_2O, NO, CO, hydrocarbons, albedo and overhead ozone column. We find that the reaction Q(^(1)D) + H_2O is minor compared to acetone photolysis as a primary source of HO_x (= OH + peroxy radicals) in the upper troposphere. Calculations using a diel steady state model agree with observed HO_x concentrations in the lower stratosphere and, for some flights, in the upper troposphere. However, for other flights in the upper troposphere, the steady state model underestimates observations by a factor of 2 or more. These model underestimates are found to be related to a recent (< 1 week) convective origin of the air. By conducting time-dependent model calculations along air trajectories determined for the STRAT flights, we show that convective injection of CH_3OOH and H_2O_2 from the boundary layer to the upper troposphere could resolve the discrepancy. These injections of HO_x reservoirs cause large HO_x increases in the tropical upper troposphere for over a week downwind of the convective activity. We propose that this mechanism provides a major source of HO_x in the upper troposphere. Simultaneous measurements of peroxides, formaldehyde and acetone along with OH and HO_2 are needed to test our hypothesis.
Journal of Geophysical Research | 1999
G. C. Toon; J.-F. Blavier; B. Sen; J. J. Margitan; C. R. Webster; Randy D. May; D. W. Fahey; R. S. Gao; L. A. Del Negro; M. H. Proffitt; J. W. Elkins; P. A. Romashkin; D. F. Hurst; S. J. Oltmans; Elliot Atlas; S. Schauffler; F. Flocke; T. P. Bui; R. M. Stimpfle; G. P. Bonne; P. B. Voss; R. C. Cohen
On May 8, 1997, vertical profiles of over 30 different gases were measured remotely in solar occultation by the Jet Propulsion Laboratory MkIV Interferometer during a balloon flight launched from Fairbanks, Alaska. These gases included H 2 O, N 2 O, CH 4 , CO, NO x , NO y , HCI, ClNO 3 , CCl 2 F 2 , CCl 3 F, CCl 4 , CHClF 2 , CClF 2 CCl 2 F, SF 6 , CH 3 Cl, and C 2 H 6 , all of which were also measured in situ by instruments on board the NASA ER-2 aircraft, which was making flights from Fairbanks during this same early May time period as part of the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) experiment. A comparison of the gas volume mixing ratios in the upper troposphere and lower stratosphere reveals agreement better than 5% for most gases. The three significant exceptions to this are SF 6 and CCl 4 for which the remote measurements exceed the in situ observations by 15-20% at all altitudes, and H 2 O for which the remote measurements are up to 30% smaller than the in situ observations near the hygropause.
Journal of Geophysical Research | 1999
Oliver W. Wingenter; D. R. Blake; Nicola J. Blake; Barkley Cushing Sive; F. Sherwood Rowland; Elliot Atlas; F. Flocke
Author(s): Wingenter, OW; Blake, DR; Blake, NJ; Sive, BC; Rowland, FS; Atlas, E; Flocke, F | Abstract: During the First Aerosol Characterization Experiment (ACE 1) field campaign, 1419 whole air samples were collected over the Southern Ocean, of which approximately 700 samples were collected in the marine boundary layer (MBL), 300 samples were taken in the free troposphere (FT), and the remainder were collected in the buffer layer (BuL), the layer between the MBL and FT. Concentrations of tetrachloroethene, ethane, ethyne, and propane decayed over the 24 day duration of the intensive portion of the field campaign, which began November 18, 1995. This decline was consistent with what is known about seasonal increase of HO and the seasonal decrease in biomass burning. Using a simple empirical model, the best fit to the observations was obtained when the average [HO] was 6.1 ± 0.3 × 105 HO cm-3, and an average [Cl] of 720 ± 100 Cl cm-3. The corresponding exchange times were 14 ± 2 days between the MBL and FT, and 49 +40/-13 days between the MBL in the intensive campaign region and the MBL region to the north (nMBL). Copyright 1999 by the American Geophysical Union.
Bulletin of the American Meteorological Society | 2015
M. C. Barth; C. A. Cantrell; William H. Brune; Steven A. Rutledge; J. H. Crawford; Heidi Huntrieser; Lawrence D. Carey; Donald R. MacGorman; Morris L. Weisman; Kenneth E. Pickering; Eric C. Bruning; Bruce E. Anderson; Eric C. Apel; Michael I. Biggerstaff; Teresa L. Campos; Pedro Campuzano-Jost; R. C. Cohen; John D. Crounse; Douglas A. Day; Glenn S. Diskin; F. Flocke; Alan Fried; C. Garland; Brian G. Heikes; Shawn B. Honomichl; Rebecca S. Hornbrook; L. Gregory Huey; Jose L. Jimenez; Timothy J. Lang; Michael Lichtenstern
AbstractThe Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source character...
Journal of Geophysical Research | 1999
Nicola J. Blake; D. R. Blake; Oliver W. Wingenter; Barkley Cushing Sive; Chang Hee Kang; Donald C. Thornton; Alan R. Bandy; Elliot Atlas; F. Flocke; Joyce M. Harris; F. Sherwood Rowland
Canister sampling for the determination of atmospheric mixing ratios of nonmethane hydrocarbons (NMHCs), selected halocarbons, and methyl nitrate was conducted aboard the National Center for Atmospheric Research (NCAR) C-130 aircraft over the Pacific and Southern Oceans as part of the First Aerosol Characterization Experiment (ACE 1) during November and December 1995. A latitudinal profile, flown from 76°N to 60°S, revealed latitudinal gradients for most trace gases. NMHC and halocarbon gases with predominantly anthropogenic sources, including ethane, ethyne, and tetrachloroethene, exhibited significantly higher mixing ratios in the northern hemisphere at all altitudes. Methyl chloride exhibited its lowest mixing ratios at the highest northern hemisphere latitudes, and the distributions of methyl nitrate and methyl iodide were consistent with tropical and subtropical oceanic sources. Layers containing continental air characteristic of aged biomass burning emissions were observed above about 3 km over the remote southern Pacific and near New Zealand between approximately 19°S and 43°S. These plumes originated from the west, possibly from fires in southern Africa. The month-long intensive investigation of the clean marine southern midlatitude troposphere south of Australia revealed decreases in the mixing ratios of ethane, ethyne, propane, and tetrachloroethene, consistent with their seasonal mixing ratio cycle. By contrast, increases in the average marine boundary layer concentrations of methyl iodide, methyl nitrate, and dimethyl sulfide (DMS) were observed as the season progressed to summer conditions. These increases were most appreciable in the region south of 44°S over Southern Ocean waters characterized as subantarctic and polar, indicating a seasonal increase in oceanic productivity for these gases.
Journal of Geophysical Research | 2006
Andrew A. Turnipseed; L. G. Huey; E. Nemitz; Robert E. Stickel; J. Higgs; David J. Tanner; D. L. Slusher; Jed P. Sparks; F. Flocke; Alex Guenther
up to approximately � 14 ng N m � 2 s � 1 . The average daytime flux peaked at � 6.0 ng N m � 2 s � 1 and accounted for � 20% of the daytime NOy flux. Calculations suggest minimum daytime surface resistances for PAN in the range of 70–130 s m � 1 .I t was estimated that approximately half of daytime uptake was through plant stomates. Average PAN deposition velocities, Vd(PAN), showed a daytime maximum of � 10.0 mm s � 1 ; however, deposition did not cease during nighttime periods. Vd(PAN) was highly variable at night and increased when canopy elements were wet from either precipitation or dew formation. Diel patterns of deposition velocity of MPAN and PPN were similar to that of PAN. These results suggest that deposition of PAN, at least to coniferous forest canopies, is much faster than predicted with current deposition algorithms. Although deposition of PAN is unlikely to compete with thermal dissociation during warm summer periods, it will likely play an important role in removing PAN from the atmosphere in colder regions or during winter. The fate of PAN at the surface and within the plants remains unknown, but may present a previously ignored source of nitrogen to ecosystems.