Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eric C. Apel is active.

Publication


Featured researches published by Eric C. Apel.


Journal of Geophysical Research | 2001

HO x budgets in a deciduous forest: Results from the PROPHET summer 1998 campaign

D. Tan; Ian C. Faloona; J. B. Simpas; William H. Brune; Paul B. Shepson; Tara L. Couch; Ann Louise Sumner; Mary Anne Carroll; T. Thornberry; Eric C. Apel; Daniel D. Riemer; William R. Stockwell

Results from a tightly constrained photochemical point model for OH and HO2 are compared to OH and HO2 data collected during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer 1998 intensive campaign held in northern Michigan. The PROPHET campaign was located in a deciduous forest marked by relatively low NOx levels and high isoprene emissions. Detailed HOx budgets are presented. The model is generally unable to match the measured OH, with the observations 2.7 times greater than the model on average. The model HO2, however, is in good agreement with the measured HO2. Even with an additional postulated OH source from the ozonolysis of unmeasured terpenes, the measured OH is 1.5 times greater than the model; the model HO2 with this added source is 15% to 30% higher than the measured HO2. Moreover, the HO2/OH ratios as modeled are 2.5 to 4 times higher than the measured ratios, indicating that the cycling between OH and HO2 is poorly described by the model. We discuss possible reasons for the discrepancies.


Journal of Geophysical Research | 2001

Nighttime observations of anomalously high levels of hydroxyl radicals above a deciduous forest canopy

Ian C. Faloona; D. Tan; William H. Brune; Julia M. Hurst; Dennis J. Barket; Tara L. Couch; Paul B. Shepson; Eric C. Apel; Daniel D. Riemer; Troy Thornberry; Mary Anne Carroll; Sanford Sillman; Gerald J. Keeler; Jessica Sagady; Dianne L. Hooper; Kurt Paterson

Diurnal measurements of hydroxyl and hydroperoxy radicals (OH and HO2) made during the Program for Research on Oxidants: Photochemistry, Emissions, and Transport (PROPHET) summer intensive of 1998 indicate that these key components of gas phase atmospheric oxidation are sustained in significant amounts throughout the night in this northern forested region. Typical overnight levels of OH observed were 0.04 parts per trillion (pptv) (1.1 × 106 molecules/cm3), while HO2 concentrations ranged from 1 to 4 pptv. Results of diagnostic testing performed before, after, and during the deployment suggest little possibility of interferences in the measurements. Collocated measurements of the reactive biogenic hydrocarbon isoprene corroborate the observed levels of OH by exhibiting significant decays overnight above the forest canopy. The observed isoprene lifetimes ranged from 1.5 to 12 hours in the dark, and they correlate well to those expected from chemical oxidation by the measured OH abundances. Possible dark reactions that could generate such elevated levels of OH include the ozonolysis of extremely reactive biogenic terpenoids. However, in steady state models, which include this hypothetical production mechanism, HO2 radicals are generated in greater quantities than were measured. Nonetheless, if the measurements are representative of the nocturnal boundary layer in midlatitude temperate forests, this observed nocturnal phenomenon might considerably alter our understanding of the diurnal pattern of atmospheric oxidation in such pristine, low-NOx environments.


Bulletin of the American Meteorological Society | 2015

The Deep Convective Clouds and Chemistry (DC3) Field Campaign

M. C. Barth; C. A. Cantrell; William H. Brune; Steven A. Rutledge; J. H. Crawford; Heidi Huntrieser; Lawrence D. Carey; Donald R. MacGorman; Morris L. Weisman; Kenneth E. Pickering; Eric C. Bruning; Bruce E. Anderson; Eric C. Apel; Michael I. Biggerstaff; Teresa L. Campos; Pedro Campuzano-Jost; R. C. Cohen; John D. Crounse; Douglas A. Day; Glenn S. Diskin; F. Flocke; Alan Fried; C. Garland; Brian G. Heikes; Shawn B. Honomichl; Rebecca S. Hornbrook; L. Gregory Huey; Jose L. Jimenez; Timothy J. Lang; Michael Lichtenstern

AbstractThe Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source character...


Journal of Geophysical Research | 1998

Observations of nonmethane hydrocarbons and oxygenated volatile organic compounds at a rural site in the southeastern United States

Daniel D. Riemer; Willer H. Pos; Peter J. Milne; Charles T. Farmer; Rod G. Zika; Eric C. Apel; Ken Olszyna; Tad Kliendienst; William A. Lonneman; S. B. Bertman; Paul B. Shepson; T. K. Starn

Measurements of an extensive range of nonmethane hydrocarbons (NMHCs) including alkanes, alkenes, and aromatics, and oxygenated volatile organic compounds (OVOCs) including alcohols, ketones, and aldehydes were conducted for several weeks during the summer of 1995 as part of the Southern Oxidants Study (SOS) at a rural experimental site (Youth, Inc.) 32 km southeast of Nashville, Tennessee, in the southeastern United States. These measurements were conducted to (1) determine the absolute magnitude and variability of oxygenated compounds found in a contemporary rural region; (2) assess the importance of the measured ambient levels of OVOCs on a photochemical reactivity basis relative to the more commonly determined NMHCs; and (3) to evaluate our ability to accurately measure oxygenates by the current techniques employed under a field study scenario. Several other physical (temperature, insolation, etc.), meteorological (wind velocity, wind direction, atmospheric structure, and boundary layer height), and chemical (criterion pollutants, NOx, SO2, CO, O3, etc.) parameters were measured concurrently with the NMHC and OVOC measurements. During the study period, OVOCs were consistently the dominant compounds present, and methanol and acetone had the highest mixing ratios. Although OVOCs made up the majority of the volatile organic compound component on a mass basis, a substantial sink for OH was isoprene and its immediate oxidation products, methacrolein and methyl vinyl ketone. In combination with CO and formaldehyde, these compounds comprised about 85% of the observed OH reactivity at the site. Acetaldehyde and methanol were responsible for an additional 10%, with the NMHCs and remaining OVOCs making up the final 5% of the measured OH reactivity at the site. These observed patterns reinforce recent studies which find OVOCs to be an important component of the rural troposphere.


Atmospheric Environment | 2003

Direct evidence for chlorine-enhanced urban ozone formation in Houston, Texas

Paul L. Tanaka; Daniel D. Riemer; Sunghye Chang; Greg Yarwood; Elena McDonald-Buller; Eric C. Apel; John J. Orlando; Philip J. Silva; Jose L. Jimenez; Manjula R. Canagaratna; James D. Neece; C. Buddie Mullins; David T. Allen

Urban air pollution is characterized by high ozone levels, formed when volatile organic compounds (VOCs) are oxidized in the presence of nitrogen oxides (NOx). VOC and NOx emissions controls have traditionally been implemented to reduce urban ozone formation, however, a separate chemical species implicated in ozone formation in Houston, TX and possibly other urban areas is the chlorine radical (Cl ). Cl enhances tropospheric VOC oxidation, but is not included in models used to develop air quality attainment plans. We present results of a three-fold approach to elucidate the importance of Cl in urban ozone formation: (1) the first direct evidence of chlorine chemistry in the urban troposphere, (2) enhanced ozone formation (>75 parts per 10 9 (ppb/h) observed when small amounts of chlorine (Cl2) are injected into captive ambient air, and (3) enhanced ozone formation (B16 ppb) predicted by regional photochemical models employing Cl chemistry. These results suggest that reducing chlorine emissions should be considered in urban ozone management strategies. r 2003 Elsevier Science Ltd. All rights reserved.


Journal of Geophysical Research | 2001

Isoprene and its oxidation products, methacrolein and methylvinyl ketone, at an urban forested site during the 1999 Southern Oxidants Study

Craig Stroud; James M. Roberts; Paul D. Goldan; William C. Kuster; P. C. Murphy; E. J. Williams; D. Hereid; D. D. Parrish; Donna Sueper; Michael K. Trainer; F. C. Fehsenfeld; Eric C. Apel; Daniel D. Riemer; B. Wert; Bruce Henry; Alan Fried; Monica Martinez-Harder; H. Harder; William H. Brune; Guiying Li; H. Xie; V. Young

Isoprene (ISOP) and its oxidation products, methacrolein (MACR) and methyl vinyl ketone (MVK), were measured at an urban forested site in Nashville, Tennessee, as part of the 1999 Southern Oxidants Study (SOS). Hourly observations were performed at Cornelia Fort Airpark for a 4 week period between June 13 and July 14. At the midday photochemical peak (1200 local standard time, LST), average mixing ratios of isoprene, MACR, and MVK were 410 parts per trillion by volume (pptv), 240 pptv, and 430 pptv, respectively. Median isoprene, MACR, and MVK mixing ratios were 400 pptv, 200 pptv, and 360 pptv, respectively, at 1200 LST. An emissions inventory calculation for Davidson County, encompassing Nashville, suggests that MACR and MVK were produced predominately from isoprene oxidation rather than direct combustion emissions. The observations are compared with results from two chemical models: a simple sequential reaction scheme and a one-dimensional (1-D) numerical box model. The daytime ratios of MVK/ISOP and MACR/ISOP varied in a systematic manner and can be reproduced by the analytical solution of the sequential reaction scheme. Air masses with more photochemically aged isoprene were observed during SOS 1999 at Cornelia Fort (0.3-1.6 hours) compared to the SOS 1990 canopy study at Kinterbish (0.1-0.6 hours). This is consistent with the proximity of the tower inlets to the forest canopies during both campaigns. Isoprene had a chemical lifetime of 20 min at the average observed midday HO mixing ratio of 8 x 10 6 molecules/cm 3 . As a result, significant conversion of isoprene to its oxidation products was observed on the timescale of transport from the dense forest canopies surrounding Nashville. The systematic diurnal behavior in the MVK/MACR ratio can also be simulated with a 1-D photochemical box model. General agreement between the observations of MACR and MVK during SOS 1999 with the two chemical models suggests we have a comprehensive understanding of the first few stages of isoprene oxidation in this urban forested environment.


Journal of Geophysical Research | 1999

The Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE): Task 3

Eric C. Apel; Jack G. Calvert; T. M. Gilpin; F. C. Fehsenfeld; D. D. Parrish; William A. Lonneman

The Nonmethane Hydrocarbon Intercomparison Experiment (NOMHICE) was designed to evaluate current analytical methods used to determine mixing ratios of atmospheric nonmethane hydrocarbons (NMHCs). A series of planned experiments, or tasks, were implemented to test the analytical methods in a graduated fashion. Tasks 1 and 2 involved relatively simple standard gas mixtures prepared by the National Institute for Standards and Technology (NIST). Results are presented here for task 3 in which a complex mixture containing 60 commonly observed NMHCs at concentrations of 1-30 parts per billion by volume (ppbv) in nitrogen diluent gas was prepared and distributed for analysis to 29 participating laboratories throughout the world. Reference mixing ratios were determined jointly by scientists from the National Center for Atmospheric Research (NCAR) and from the U. S. Environmental Protection Agency (EPA). Participants were asked to identify and quantify the hydrocarbons present in the mixture and submit their results to NCAR-NOMHICE scientists. The results were encouraging overall. Some laboratories performed extremely well during this exercise whereas other laboratories experienced problems in either identification or quantification or both. It is evident from the comparison of the NCAR-NOMHICE results with both the EPA analysis and the top 11 analyses in the study that very good agreement is achievable between laboratories for mixtures in this concentration range. Some of the largest analytical discrepancies were from laboratories that used in-house standards for their calibration and/or syringe sample injection techniques. A major conclusion from this study is that the use of high-quality gas phase standards, introduced into the measurement instrument in a similar manner to air samples, is an important prerequisite for an accurate analysis.


Journal of Geophysical Research | 1997

Intercomparison of six ambient [CH2O] measurement techniques

Tim Gilpin; Eric C. Apel; Alan Fried; Bryan P. Wert; Jack G. Calvert; Zhang Genfa; Purnendu K. Dasgupta; J. W. Harder; Brian G. Heikes; Brian Hopkins; Hal Westberg; T. E. Kleindienst; Yin Nan Lee; X. Zhou; William A. Lonneman; Scott David Sewell

From May 29 to June 3, 1995 a blind intercomparison of six ambient formaldehyde measurement techniques took place at a field site near the National Center for Atmospheric Research in Boulder, Colorado. The continuous measurement methods intercompared were tunable diode laser absorption spectroscopy, (TDLAS); coil/2,4-dinitrophenylhydrazine, (CDNPH); 1,3-cyclohexanedione-diffusion scrubber (CHDDS); and the coil enzyme method (CENZ). In addition, two different cartridge methods were compared: silica gel-2,4-dinitrophenylhydrazine (DPNH) systems and a C-18-DNPH system. The intercomparison was conducted with spiked zero air (part 1) and ambient air (part 2). The CH2O standards for part 1 were calibrated by several independent methods and delivered to participants via a common glass manifold with potential trace gas interferants common to ambient air (O3, SO2, NO2, isoprene, H2O). The TDLAS system was used to confirm the absolute accuracy of the standards and served as a mission reference for part 1. The ambient phase lasted 44 hours with all participants sampling from a common glass tower. Differences between the ambient [CH2O] observed by the TDLAS and the other continuous methods were significant in some cases. For matched ambient measurement times the average ratios (±1σ) [CH2O]measured/[CH2O]TDLAS were: 0.89±0.12 (CDNPH); 1.30±0.02 (CHDDS); 0.63±0.03 (CENZ). The methods showed similar variations but different absolute values and the divergences appeared to result largely from calibration differences (no gas phase standards were used by groups other than NCAR). When the regressions of the participant [CH2O] values versus the TDLAS values, (measured in part 1), were used to normalize all of the results to the common gas phase standards of the NCAR group, the average ratios (±1σ), [CH2O]corrected/[CH2O]TDLAS for the first measurement period were much closer to unity: 1.04±0.14 (CDNPH), 1.00±0.11 (CHDDS), and 0.82±0.08 (CENZ). With the continuous methods used here, no unequivocal interferences were seen when SO2, NO2, O3, and isoprene impurities were added to prepared mixtures or when these were present in ambient air. The measurements with the C-18 DNPH (no O3 scrubber) and silica gel DNPH cartridges (with O3 scrubber) showed a reasonable correlation with the TDLAS measurements, although the results from the silica cartridges were about a factor of two below the standards in the spike experiments and about 35% below in the ambient measurements. Using the NCAR gas-phase spike data to calibrate the response of the silica gel cartridges in the ambient studies, the results are the same within statistical uncertainty. When the same gas phase calibration was used with the C-18 cartridges, the results showed a positive bias of about 35%, presumably reflecting a positive ozone interference in this case (no ozone scrubber used). The silica DNPH cartridge results from the second participant were highly scattered and showed no significant correlation with the TDLAS measurements.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Active and widespread halogen chemistry in the tropical and subtropical free troposphere

Siyuan Wang; Johan A. Schmidt; Sunil Baidar; Sean Coburn; B. Dix; Theodore K. Koenig; Eric C. Apel; Dene Bowdalo; Teresa L. Campos; Ed Eloranta; M. J. Evans; Joshua Digangi; Mark A. Zondlo; Ru Shan Gao; Julie Haggerty; Samuel R. Hall; Rebecca S. Hornbrook; Daniel J. Jacob; Bruce Morley; Bradley Pierce; M. Reeves; Pavel Romashkin; Arnout ter Schure; R. Volkamer

Significance Our measurements show that tropospheric halogen chemistry has a larger capacity to destroy O3 and oxidize atmospheric mercury than previously recognized. Halogen chemistry is currently missing in most global and climate models, and is effective at removing O3 at altitudes where intercontinental O3 transport occurs. It further helps explain the low O3 levels in preindustrial times. Public health concerns arise from bioaccumulation of the neurotoxin mercury in fish. Our results emphasize that bromine chemistry in the free troposphere oxidizes mercury at a faster rate, and makes water-soluble mercury available for scavenging by thunderstorms. Naturally occurring bromine in air aloft illustrates global interconnectedness between energy choices affecting mercury emissions in developing nations and mercury deposition in, e.g., Nevada, or the southeastern United States. Halogens in the troposphere are increasingly recognized as playing an important role for atmospheric chemistry, and possibly climate. Bromine and iodine react catalytically to destroy ozone (O3), oxidize mercury, and modify oxidative capacity that is relevant for the lifetime of greenhouse gases. Most of the tropospheric O3 and methane (CH4) loss occurs at tropical latitudes. Here we report simultaneous measurements of vertical profiles of bromine oxide (BrO) and iodine oxide (IO) in the tropical and subtropical free troposphere (10°N to 40°S), and show that these halogens are responsible for 34% of the column-integrated loss of tropospheric O3. The observed BrO concentrations increase strongly with altitude (∼3.4 pptv at 13.5 km), and are 2–4 times higher than predicted in the tropical free troposphere. BrO resembles model predictions more closely in stratospheric air. The largest model low bias is observed in the lower tropical transition layer (TTL) over the tropical eastern Pacific Ocean, and may reflect a missing inorganic bromine source supplying an additional 2.5–6.4 pptv total inorganic bromine (Bry), or model overestimated Bry wet scavenging. Our results highlight the importance of heterogeneous chemistry on ice clouds, and imply an additional Bry source from the debromination of sea salt residue in the lower TTL. The observed levels of bromine oxidize mercury up to 3.5 times faster than models predict, possibly increasing mercury deposition to the ocean. The halogen-catalyzed loss of tropospheric O3 needs to be considered when estimating past and future ozone radiative effects.


Journal of Geophysical Research | 2004

Multiscale simulations of tropospheric chemistry in the eastern Pacific and on the U.S. West Coast during spring 2002

Youhua Tang; Gregory R. Carmichael; Larry W. Horowitz; Itsushi Uno; Jung-Hun Woo; David G. Streets; Donald Dabdub; Gakuji Kurata; Adrian Sandu; J. D. Allan; Elliot Atlas; F. M. Flocke; L. G. Huey; R. O. Jakoubek; Dylan B. Millet; Patricia K. Quinn; James M. Roberts; Douglas R. Worsnop; Allen H. Goldstein; Stephen George Donnelly; S. Schauffler; V. Stroud; Kristen Johnson; Melody A. Avery; Hanwant B. Singh; Eric C. Apel

[ 1] Regional modeling analysis for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) experiment over the eastern Pacific and U. S. West Coast is performed using a multiscale modeling system, including the regional tracer model Chemical Weather Forecasting System (CFORS), the Sulfur Transport and Emissions Model 2003 (STEM-2K3) regional chemical transport model, and an off-line coupling with the Model of Ozone and Related Chemical Tracers ( MOZART) global chemical transport model. CO regional tracers calculated online in the CFORS model are used to identify aircraft measurement periods with Asian influences. Asian-influenced air masses measured by the National Oceanic and Atmospheric Administration (NOAA) WP-3 aircraft in this experiment are found to have lower DeltaAcetone/DeltaCO, DeltaMethanol/DeltaCO, and DeltaPropane/DeltaEthyne ratios than air masses influenced by U. S. emissions, reflecting differences in regional emission signals. The Asian air masses in the eastern Pacific are found to usually be well aged (> 5 days), to be highly diffused, and to have low NOy levels. Chemical budget analysis is performed for two flights, and the O-3 net chemical budgets are found to be negative ( net destructive) in the places dominated by Asian influences or clear sites and positive in polluted American air masses. During the trans-Pacific transport, part of gaseous HNO3 was converted to nitrate particle, and this conversion was attributed to NOy decline. Without the aerosol consideration, the model tends to overestimate HNO3 background concentration along the coast region. At the measurement site of Trinidad Head, northern California, high-concentration pollutants are usually associated with calm wind scenarios, implying that the accumulation of local pollutants leads to the high concentration. Seasonal variations are also discussed from April to May for this site. A high-resolution nesting simulation with 12-km horizontal resolution is used to study the WP-3 flight over Los Angeles and surrounding areas. This nested simulation significantly improved the predictions for emitted and secondary generated species. The difference of photochemical behavior between the coarse (60-km) and nesting simulations is discussed and compared with the observation.

Collaboration


Dive into the Eric C. Apel's collaboration.

Top Co-Authors

Avatar

Andrew J. Weinheimer

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Rebecca S. Hornbrook

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. R. Blake

University of California

View shared research outputs
Top Co-Authors

Avatar

Teresa L. Campos

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

F. Flocke

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

Alan J. Hills

National Center for Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar

C. A. Cantrell

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

William H. Brune

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Samuel R. Hall

National Center for Atmospheric Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge