Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Sima is active.

Publication


Featured researches published by F. Sima.


Acta Biomaterialia | 2008

Strontium-substituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response

Chiara Capuccini; Paola Torricelli; F. Sima; Elisa Boanini; C. Ristoscu; Barbara Bracci; G. Socol; Milena Fini; I.N. Mihailescu; Adriana Bigi

The increasing interest in strontium incorporation into biomaterials for hard tissue repair is justified by the growing evidence of its beneficial effect on bone. We successfully synthesized hydroxyapatite (HA) thin films with different extents of strontium substitution for calcium (0, 1, 3 or 7 at.%) by pulsed-laser deposition. The coatings displayed a granular surface and a good degree of crystallinity, which slightly diminished as strontium content increased. Osteoblast-like MG63 cells and human osteoclasts were cultured on the thin films up to 21 days. MG63 cells grown on the strontium-doped HA coatings displayed normal morphology, good proliferation and increased values of the differentiation parameters, whereas the number of osteoclasts was negatively influenced by the presence of strontium. The positive effect of the ion on bone cells was particularly evident in the case of coatings deposited from HA at relatively high strontium contents (3-7%), where significantly increased values of alkaline phosphatase activity, osteocalcin, type I collagen and osteoprotegerin/TNF-related activation-induced cytokine receptor ratio, and considerably reduced values of osteoclast proliferation, were observed.


Biomaterials | 2009

Biofunctional alendronate-Hydroxyapatite thin films deposited by Matrix Assisted Pulsed Laser Evaporation

Adriana Bigi; Elisa Boanini; Chiara Capuccini; Milena Fini; I.N. Mihailescu; C. Ristoscu; F. Sima; Paola Torricelli

We applied Matrix Assisted Pulsed Laser Evaporation (MAPLE) in order to synthesize alendronate-hydroxyapatite thin films on titanium substrates. Alendronate-hydroxyapatite composite nanocrystals with increasing bisphosphonate content (0, 3.9, 7.1%wt) were synthesized in aqueous medium. Then, they were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The depositions were conducted with a KrF* excimer laser source (l=248nm, t(FWHM)=25ns) in mild conditions of temperature and pressure. The obtained thin films had a good crystallinity, which slightly decreases with the increase of alendronate content, and exhibited a porous-like structure. Osteoblast-like MG63 cells and human osteoclasts were cultured on the thin films up to 14 days. In the presence of alendronate, MG63 cells displayed a normal morphology, increased proliferation and higher values of differentiation parameters, namely type I collagen, osteocalcin, and osteoprotegerin/TNF-related activation-induced cytokine receptor ratio. In contrast, osteoclasts showed significantly reduced proliferation, and increased level of Caspase 3. Moreover, the coatings synthesized from hydroxyapatite at relatively high bisphosphonate content (7.1% wt) displayed a reduced production of Tumour Necrosis Factor alpha (TNF-alpha) and Interleukin 6 (IL-6), suggesting a down-regulatory role of alendronate on the inflammatory reaction. The successful deposition of alendronate modified hydroxyapatite thin films yields coatings with enhanced bioactivity, able to promote osteoblast differentiation and to inhibit osteoclast proliferation.


Journal of Inorganic Biochemistry | 2012

Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation

Elisa Boanini; Paola Torricelli; Milena Fini; F. Sima; N. Serban; I.N. Mihailescu; Adriana Bigi

Octacalcium phosphate (OCP) is a promising alternative to hydroxyapatite as biomaterial for hard tissue repair. In this study we successfully applied Matrix Assisted Pulsed Laser Evaporation (MAPLE) to deposit Mg and Sr doped OCP (MgOCP and SrOCP), as well as OCP, thin films on titanium substrates. OCP, Mg-substituted and Sr-substituted OCP were synthesized in aqueous medium, then were suspended in deionised water, frozen at liquid nitrogen temperature and used as targets for MAPLE experiments. The depositions were carried out using a KrF* excimer laser source (λ=248 nm, τ(FWHM)=25 ns) in mild conditions of temperature and pressure. The results of X-ray diffraction, infrared spectroscopy, scanning electron microscopy and energy dispersive spectroscopy investigations revealed that the OCP thin films are deposited in the form of cauliflower-like aggregates and droplets, as well as crystal fragments, with a homogeneous distribution of magnesium and strontium on the surface of the coatings. Human osteoblast-like MG-63 cells were cultured on the different biomaterials up to 14days. MgOCP and SrOCP coatings promote osteoblast proliferation and differentiation with respect to OCP. Under these experimental conditions, the production of procollagen-type I, transforming growth factor-β1, alkaline phosphatase and osteocalcin indicated that the level of differentiation of the cells grown on the different coatings increased in the order OCP


Biomacromolecules | 2011

Levan Nanostructured Thin Films by MAPLE Assembling

F. Sima; Esra Cansever Mutlu; Mehmet S. Eroglu; Livia E. Sima; N. Serban; C. Ristoscu; Stefana M. Petrescu; Ebru Toksoy Oner; I.N. Mihailescu

Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan.


Acta Biomaterialia | 2011

Fibronectin layers by matrix-assisted pulsed laser evaporation from saline buffer-based cryogenic targets

F. Sima; Patricia M. Davidson; Emmanuel Pauthe; Livia E. Sima; Olivier Gallet; I.N. Mihailescu; Karine Anselme

The deposition of fibronectin (FN) from saline buffer-based cryogenic targets by matrix-assisted pulsed laser evaporation (MAPLE) onto silicon substrates is reported. A uniform distribution of FN was revealed by Ponceau staining after control experiments on nitrocellulose paper. Well-organized particulates with heights from hundreds of nanometers up to more than 1 μm packed in homogeneous layers were evidenced by optical microscopy and profilometry on Si substrates. Atomic force microscopy images showed regions composed of buffer and FN aggregates forming a compact film. Comparison of infrared spectra of drop-cast and MAPLE-deposited FN confirmed the preservation of composition and showed no degradation of the protein. The protein deposition on Si was confirmed by antibody staining. Small aggregates and fluorescent fibrils were visualized by fluorescence microscopy. Superior attachment of human osteoprogenitor cells cultivated for 3 h proved the presence of stable and intact FN molecules after transfer.


Applied Physics Letters | 2012

Combinatorial matrix-assisted pulsed laser evaporation: Single-step synthesis of biopolymer compositional gradient thin film assemblies

F. Sima; E. Axente; Livia E. Sima; U. Tuyel; Mehmet S. Eroglu; N. Serban; C. Ristoscu; Stefana M. Petrescu; E. Toksoy Oner; I.N. Mihailescu

We introduce a combinatorial approach for the fabrication of organic biopolymer thin films. Structures with compositional gradient are obtained by simultaneous laser vaporization of two distinct targets. Matrix-assisted pulsed laser evaporation deposition method was applied to obtain a compositional library of levan and oxidized levan in form of thin film. The gradient of film composition and structure was demonstrated by infrared spectroscopy while in vitro cell culture assays illustrated characteristic responses of cells to specific surface regions. The method can rapidly generate discrete areas of organic film compositions with improved properties than starting materials.


Journal of Colloid and Interface Science | 2015

Strontium and zoledronate hydroxyapatites graded composite coatings for bone prostheses.

Elisa Boanini; Paola Torricelli; F. Sima; E. Axente; Milena Fini; I.N. Mihailescu; Adriana Bigi

Both strontium and zoledronate (ZOL) are known to be useful for the treatment of bone diseases associated to the loss of bone substance. In this work, we applied an innovative technique, Combinatorial Matrix-Assisted Pulsed Laser Evaporation (C-MAPLE), to deposit gradient thin films with variable compositions of Sr-substituted hydroxyapatite (SrHA) and ZOL modified hydroxyapatite (ZOLHA) on Titanium substrates. Compositional gradients were obtained by simultaneous laser vaporization of the two distinct material targets. The coatings display good crystallinity and granular morphology, which do not vary with composition. Osteoblast-like MG63 cells and human osteoclasts were co-cultured on the thin films up to 21 days. The results show that Sr counteracts the negative effect of relatively high concentration of ZOL on osteoblast viability, whereas both Sr and ZOL enhance extracellular matrix deposition. In particular, ZOL promotes type I collagen production, whereas Sr increases the production of alkaline phosphatase. Moreover, ZOL exerts a greater effect than Sr on osteoprotegerin/RANKL ratio and, as a consequence, on the reduction of osteoclast proliferation and activity. The deposition method allows to modulate the composition of the thin films and hence the promotion of bone growth and the inhibition of bone resorption.


Journal of Applied Physics | 2007

Enhanced gas sensing of Au nanocluster-doped or -coated zinc oxide thin films

G. Socol; E. Axente; C. Ristoscu; F. Sima; A.C. Popescu; N. Stefan; I.N. Mihailescu; Ludovic Escoubas; J. Ferreira; S. Bakalova; A. Szekeres

We demonstrated that doping or covering with Au nanoclusters boosts gas sensing effectiveness of optical metal oxide sensors. The sensing response of pulsed laser deposited ZnO films as sensing element was tested by m-line technique for low concentration (1000ppm) of butane in environmental N2. The optical interrogation was performed for three types of coatings: undoped ZnO, undoped ZnO structures partially covered with Au nanoclusters, or obtained from Au (0.5wt%) doped ZnO targets. Nanocluster coating tripled the sensitivity, while doping resulted in an increase of up to 45% as compared with simple structures.


Journal of Biomedical Materials Research Part B | 2011

Biocompatibility and bioactivity enhancement of Ce stabilized ZrO2 doped HA coatings by controlled porosity change of Al2O3 substrates

F. Sima; C. Ristoscu; Diana Caiteanu; C.N. Mihailescu; N. Stefan; I.N. Mihailescu; G. Prodan; V. Ciupina; Eriks Palcevskis; Janis Krastins; Livia E. Sima; Stefana M. Petrescu

Al(2) O(3) substrates with controlled porosity were manufactured from nanosized powders obtained by plasma processing. It was observed that when increasing the sintering temperature the overall porosity was decreasing, but the pores got larger. In a second step, Ce stabilized ZrO(2) doped hydroxyapatite coatings were pulsed laser deposited onto the Al(2) O(3) substrates. It was shown that the surface morphology, consisting of aggregates and particulates in micrometric range, was altered by the substrate porosity and interface properties, respectively. TEM studies evidenced that Ce stabilized ZrO(2) doped HA particulates ranged from 10 to 50 nm, strongly depending on the Al(2) O(3) porosity. The coatings consisted of HA nanocrystals embedded in an amorphous matrix quite similar to the bone structure. These findings were congruent with the increased biocompatibility and bioactivity of these layers confirmed by enhanced growing and proliferation of human mesenchymal stem cells.


Journal of Biomedical Materials Research Part A | 2008

Immobilization of urease by laser techniques: Synthesis and application to urea biosensors

E. György; F. Sima; I.N. Mihailescu; Tomi Smausz; G. Megyeri; Renáta Kékesi; B. Hopp; L. Zdrentu; Stefana M. Petrescu

Urease thin films have been immobilized using matrix-assisted pulsed laser evaporation for biosensor applications in clinical diagnostics. The targets exposed to laser radiation were made of frozen composites that had been manufactured by dissolving urease in distilled water. An UV KrF* (lambda = 248 nm, tauFWHM congruent with 30 ns, nu = 10 Hz) excimer source was used for the multipulse laser irradiation of the targets that were cooled down to solidification using Peltier elements. The incident laser fluence was set at 0.4 J/cm2. The surface morphology and chemical bonding states of the laser immobilized urease thin films were investigated by atomic force microscopy and Fourier transform infrared spectroscopy. The enzymatic activity and kinetics of the immobilized urease were assayed by the Worthington method, which monitors urea hydrolysis by coupling ammonia production to a glutamate dehydrogenase reaction. Decreased absorbance was found at 340 nm and correlated with the enzymatic activity of urease.

Collaboration


Dive into the F. Sima's collaboration.

Top Co-Authors

Avatar

I.N. Mihailescu

Holon Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

E. Axente

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Gallet

Cergy-Pontoise University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karine Anselme

University of Strasbourg

View shared research outputs
Researchain Logo
Decentralizing Knowledge