Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabiano Oliveira is active.

Publication


Featured researches published by Fabiano Oliveira.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model

Regis Gomes; Clarissa Teixeira; Maria Jânia Teixeira; Fabiano Oliveira; Maria José Menezes; Claire Silva; Camila I. de Oliveira; José Carlos Miranda; Dia-Eldin Elnaiem; Shaden Kamhawi; Jesus G. Valenzuela; Cláudia Brodskyn

Visceral leishmaniasis (VL) is a fatal disease for humans, and no vaccine is currently available. Sand fly salivary proteins have been associated with protection against cutaneous leishmaniasis. To test whether vector salivary proteins can protect against VL, a hamster model was developed involving intradermal inoculation in the ears of 100,000 Leishmania infantum chagasi parasites together with Lutzomyia longipalpis saliva to mimic natural transmission by sand flies. Hamsters developed classical signs of VL rapidly, culminating in a fatal outcome 5–6 months postinfection. Saliva had no effect on the course of infection in this model. Immunization with 16 DNA plasmids coding for salivary proteins of Lu. longipalpis resulted in the identification of LJM19, a novel 11-kDa protein, that protected hamsters against the fatal outcome of VL. LJM19-immunized hamsters maintained a low parasite load that correlated with an overall high IFN-γ/TGF-β ratio and inducible NOS expression in the spleen and liver up to 5 months postinfection. Importantly, a delayed-type hypersensitivity response with high expression of IFN-γ was also noted in the skin of LJM19-immunized hamsters 48 h after exposure to uninfected sand fly bites. Induction of IFN-γ at the site of bite could partly explain the protection observed in the viscera of LJM19-immunized hamsters through direct parasite killing and/or priming of anti-Leishmania immunity. We have shown that immunity to a defined salivary protein (LJM19) confers powerful protection against the fatal outcome of a parasitic disease, which reinforces the concept of using components of arthropod saliva in vaccine strategies against vector-borne diseases.


BMC Genomics | 2006

Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis

Jennifer M. Anderson; Fabiano Oliveira; Shaden Kamhawi; Ben J. Mans; David Reynoso; Amy E. Seitz; Phillip G. Lawyer; Mark Garfield; MyVan Pham; Jesus G. Valenzuela

BackgroundImmune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies, particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine.ResultsTwo salivary gland cDNA libraries from female sandflies Phlebotomus argentipes and P. perniciosus were constructed, sequenced and proteomic analysis of the salivary proteins was performed. The majority of the sequenced transcripts from the two cDNA libraries coded for secreted proteins. In this analysis we identified transcripts coding for protein families not previously described in sandflies. A comparative sandfly salivary transcriptome analysis was performed by using these two cDNA libraries and two other sandfly salivary gland cDNA libraries from P. ariasi and Lutzomyia longipalpis, also vectors of visceral leishmaniasis. Full-length secreted proteins from each sandfly library were compared using a stand-alone version of BLAST, creating formatted protein databases of each sandfly library. Related groups of proteins from each sandfly species were combined into defined families of proteins. With this comparison, we identified families of salivary proteins common among all of the sandflies studied, proteins to be genus specific and proteins that appear to be species specific. The common proteins included apyrase, yellow-related protein, antigen-5, PpSP15 and PpSP32-related protein, a 33-kDa protein, D7-related protein, a 39- and a 16.1- kDa protein and an endonuclease-like protein. Some of these families contained multiple members, including PPSP15-like, yellow proteins and D7-related proteins suggesting gene expansion in these proteins.ConclusionThis comprehensive analysis allows us the identification of genus- specific proteins, species-specific proteins and, more importantly, proteins common among these different sandflies. These results give us insights into the repertoire of salivary proteins that are potential candidates for a vector-based vaccine.


PLOS Neglected Tropical Diseases | 2008

Immunity to distinct sand fly salivary proteins primes the anti-Leishmania immune response towards protection or exacerbation of disease.

Fabiano Oliveira; Phillip G. Lawyer; Shaden Kamhawi; Jesus G. Valenzuela

Background Leishmania parasites are transmitted in the presence of sand fly saliva. Together with the parasite, the sand fly injects biologically active salivary components that favorably change the environment at the feeding site. Exposure to bites or to salivary proteins results in immunity specific to these components. Mice immunized with Phlebotomus papatasi salivary gland homogenate (SGH) or pre-exposed to uninfected bites were protected against Leishmania major infection delivered by needle inoculation with SGH or by infected sand fly bites. Immunization with individual salivary proteins of two sand fly species protected mice from L. major infection. Here, we analyze the immune response to distinct salivary proteins from P. papatasi that produced contrasting outcomes of L. major infection. Methodology/Principal Findings DNA immunization with distinct DTH-inducing salivary proteins from P. papatasi modulates L. major infection. PpSP15-immunized mice (PpSP15-mice) show lasting protection while PpSP44-immunized mice (PpSP44-mice) aggravate the infection, suggesting that immunization with these distinct molecules alters the course of anti-Leishmania immunity. Two weeks post-infection, 31.5% of CD4+ T cells produced IFN-γ in PpSP15-mice compared to 7.1% in PpSP44-mice. Moreover, IL-4-producing cells were 3-fold higher in PpSP44-mice. At an earlier time point of two hours after challenge with SGH and L. major, the expression profile of PpSP15-mice showed over 3-fold higher IFN-γ and IL-12-Rβ2 and 20-fold lower IL-4 expression relative to PpSP44-mice, suggesting that salivary proteins differentially prime anti-Leishmania immunity. This immune response is inducible by sand fly bites where PpSP15-mice showed a 3-fold higher IFN-γ and a 5-fold lower IL-4 expression compared with PpSP44-mice. Conclusions/Significance Immunization with two salivary proteins from P. papatasi, PpSP15 and PpSP44, produced distinct immune profiles that correlated with resistance or susceptibility to Leishmania infection. The demonstration for the first time that immunity to a defined salivary protein (PpSP44) results in disease enhancement stresses the importance of the proper selection of vector-based vaccine candidates.


BMC Genomics | 2008

The midgut transcriptome of Lutzomyia longipalpis: comparative analysis of cDNA libraries from sugar-fed, blood-fed, post-digested and Leishmania infantum chagasi-infected sand flies

Ryan C. Jochim; Clarissa Teixeira; Andre Laughinghouse; Jianbing Mu; Fabiano Oliveira; Regis Gomes; Dia-Eldin Elnaiem; Jesus G. Valenzuela

BackgroundIn the life cycle of Leishmania within the alimentary canal of sand flies the parasites have to survive the hostile environment of blood meal digestion, escape the blood bolus and attach to the midgut epithelium before differentiating into the infective metacyclic stages. The molecular interactions between the Leishmania parasites and the gut of the sand fly are poorly understood. In the present work we sequenced five cDNA libraries constructed from midgut tissue from the sand fly Lutzomyia longipalpis and analyzed the transcripts present following sugar feeding, blood feeding and after the blood meal has been processed and excreted, both in the presence and absence of Leishmania infantum chagasi.ResultsComparative analysis of the transcripts from sugar-fed and blood-fed cDNA libraries resulted in the identification of transcripts differentially expressed during blood feeding. This included upregulated transcripts such as four distinct microvillar-like proteins (LuloMVP1, 2, 4 and 5), two peritrophin like proteins, a trypsin like protein (Lltryp1), two chymotrypsin like proteins (LuloChym1A and 2) and an unknown protein. Downregulated transcripts by blood feeding were a microvillar-like protein (LuloMVP3), a trypsin like protein (Lltryp2) and an astacin-like metalloprotease (LuloAstacin). Furthermore, a comparative analysis between blood-fed and Leishmania infected midgut cDNA libraries resulted in the identification of the transcripts that were differentially expressed due to the presence of Leishmania in the gut of the sand fly. This included down regulated transcripts such as four microvillar-like proteins (LuloMVP1,2, 4 and 5), a Chymotrypsin (LuloChym1A) and a carboxypeptidase (LuloCpepA1), among others. Upregulated midgut transcripts in the presence of Leishmania were a peritrophin like protein (LuloPer1), a trypsin-like protein (Lltryp2) and an unknown protein.ConclusionThis transcriptome analysis represents the largest set of sequence data reported from a specific sand fly tissue and provides further information of the transcripts present in the sand fly Lutzomyia longipalpis. This analysis provides the detailed information of molecules present in the midgut of this sand fly and the transcripts potentially modulated by blood feeding and by the presence of the Leishmania parasite. More importantly, this analysis suggests that Leishmania infantum chagasi alters the expression profile of certain midgut transcripts in the sand fly during blood meal digestion and that this modulation may be relevant for the survival and establishment of the parasite in the gut of the fly. Moreover, this analysis suggests that these changes may be occurring during the digestion of the blood meal and not afterwards.


Infection and Immunity | 2005

Toward a Novel Experimental Model of Infection To Study American Cutaneous Leishmaniasis Caused by Leishmania braziliensis

Tatiana R. de Moura; Fernanda O. Novais; Fabiano Oliveira; Jorge Clarêncio; Almerio Noronha; Aldina Barral; Cláudia Brodskyn; Camila I. de Oliveira

ABSTRACT Leishmania spp. cause a broad spectrum of diseases collectively known as leishmaniasis. Leishmania braziliensis is the main etiological agent of American cutaneous leishmaniasis (ACL) and mucocutaneous leishmaniasis. In the present study, we have developed an experimental model of infection that closely resembles ACL caused by L. braziliensis. In order to do so, BALB/c mice were infected in the ear dermis with 105 parasites and distinct aspects of the infection were evaluated. Following inoculation, parasite expansion in the ear dermis was accompanied by the development of an ulcerated dermal lesion which healed spontaneously, as seen by the presence of a scar. Histological analysis of infected ears showed the presence of a mixed inflammatory infiltrate consisting of both mononuclear and polymorphonuclear cells. In draining lymph nodes, parasite replication was detected throughout the infection. In vitro restimulation of draining lymph node cells followed by intracellular staining showed an up-regulation in the production of gamma interferon (IFN-γ) and in the frequency of IFN-γ-secreting CD4+ and CD8+ T cells. Reverse transcription-PCR of ears and draining lymph node cells showed the expression of CC chemokines. The dermal model of infection with L. braziliensis herein is able to reproduce aspects of the natural infection, such as the presence of an ulcerated lesion, parasite dissemination to lymphoid areas, and the development of a Th1-type immune response. These results indicate that this model shall be useful to address questions related to the concomitant immunity to reinfection and parasite persistence leading to mucocutaneous leishmaniasis.


PLOS Neglected Tropical Diseases | 2010

Discovery of markers of exposure specific to bites of Lutzomyia longipalpis, the vector of Leishmania infantum chagasi in Latin America.

Clarissa Teixeira; Regis Gomes; Nicolas Collin; David Reynoso; Ryan C. Jochim; Fabiano Oliveira; Amy E. Seitz; Dia-Eldin Elnaiem; Arlene de Jesus Mendes Caldas; Ana Paula Souza; Cláudia Brodskyn; Ivete Lopes de Mendonça; Carlos Henrique Nery Costa; Petr Volf; Aldina Barral; Shaden Kamhawi; Jesus G. Valenzuela

Background Sand flies deliver Leishmania parasites to a host alongside salivary molecules that affect infection outcomes. Though some proteins are immunogenic and have potential as markers of vector exposure, their identity and vector specificity remain elusive. Methodology/Principal Findings We screened human, dog, and fox sera from endemic areas of visceral leishmaniasis to identify potential markers of specific exposure to saliva of Lutzomyia longipalpis. Human and dog sera were further tested against additional sand fly species. Recombinant proteins of nine transcripts encoding secreted salivary molecules of Lu. longipalpis were produced, purified, and tested for antigenicity and specificity. Use of recombinant proteins corresponding to immunogenic molecules in Lu. longipalpis saliva identified LJM17 and LJM11 as potential markers of exposure. LJM17 was recognized by human, dog, and fox sera; LJM11 by humans and dogs. Notably, LJM17 and LJM11 were specifically recognized by humans exposed to Lu. longipalpis but not by individuals exposed to Lu. intermedia. Conclusions/Significance Salivary recombinant proteins are of value as markers of vector exposure. In humans, LJM17 and LJM11 emerged as potential markers of specific exposure to Lu. longipalpis, the vector of Leishmania infantum chagasi in Latin America. In dogs, LJM17, LJM11, LJL13, LJL23, and LJL143 emerged as potential markers of sand fly exposure. Testing these recombinant proteins in large scale studies will validate their usefulness as specific markers of Lu. longipalpis exposure in humans and of sand fly exposure in dogs.


PLOS Neglected Tropical Diseases | 2007

Enhanced Leishmania braziliensis Infection Following Pre-Exposure to Sandfly Saliva

Tatiana R. de Moura; Fabiano Oliveira; Fernanda O. Novais; José Carlos Miranda; Jorge Clarêncio; Ivonise Follador; Edgar M. Carvalho; Jesus G. Valenzuela; Manoel Barral-Netto; Aldina Barral; Cláudia Brodskyn; Camila I. de Oliveira

Background Sand fly saliva has an array of pharmacological and immunomodulatory components, and immunity to saliva protects against Leishmania infection. In the present study, we have studied the immune response against Lutzomyia intermedia saliva, the main vector of Leishmania braziliensis in Brazil, and the effects of saliva pre-exposure on L. braziliensis infection employing an intradermal experimental model. Methodology/principal findings BALB/c mice immunized with L. intermedia salivary gland sonicate (SGS) developed a saliva-specific antibody response and a cellular immune response with presence of both IFN-γ and IL-4. The inflammatory infiltrate observed in SGS-immunized mice was comprised of numerous polymorphonuclear and few mononuclear cells. Mice challenged with live L. braziliensis in the presence of saliva were not protected although lesion development was delayed. The inoculation site and draining lymph node showed continuous parasite replication and low IFN-γ to IL-4 ratio, indicating that pre-exposure to L. intermedia saliva leads to modulation of the immune response. Furthermore, in an endemic area of cutaneous leishmaniasis, patients with active lesions displayed higher levels of anti-L. intermedia saliva antibodies when compared to individuals with a positive skin test result for Leishmania. Conclusion These results show that pre-exposure to sand fly saliva plays an important role in the outcome of cutaneous leishmaniasis, in both mice and humans. They emphasize possible hurdles in the development of vaccines based on sand fly saliva and the need to identify and select the individual salivary candidates instead of using whole salivary mixture that may favor a non-protective response.


Clinical Infectious Diseases | 2003

Clinical Utility of Polymerase Chain Reaction—Based Detection of Leishmania in the Diagnosis of American Cutaneous Leishmaniasis

André Báfica; Fabiano Oliveira; Cecilia B. F. Favali; Tania Correa; Luiz Antonio Rodrigues de Freitas; Eliane G. Nascimento; Jackson Maurício Lopes Costa; Aldina Barral

We evaluated the use of polymerase chain reaction (PCR) for diagnosis of American cutaneous leishmaniasis (ACL) in an area in Bahia, Brazil, where Leishmania braziliensis is endemic. Leishmania DNA was detected in 50 cases, yielding a positivity rate of 100%, which was higher than the rates for all of the other diagnostic methods studied--namely, the Montenegro skin test, anti-Leishmania serological testing, and microscopic examination of lesion biopsy specimens. These findings have led us to propose guidelines for the diagnosis of ACL that use PCR as the principal means of parasitological confirmation of cases.


BMC Genomics | 2006

High degree of conservancy among secreted salivary gland proteins from two geographically distant Phlebotomus duboscqi sandflies populations (Mali and Kenya)

Hirotomo Kato; Jennifer M. Anderson; Shaden Kamhawi; Fabiano Oliveira; Phillip G. Lawyer; Van M. Pham; Constance Souko Sangare; Sibiry Samake; Ibrahim Sissoko; Mark Garfield; Lucie Sigutova; Petr Volf; Seydou Doumbia; Jesus G. Valenzuela

BackgroundSalivary proteins from sandflies are potential targets for exploitation as vaccines to control Leishmania infection; in this work we tested the hypothesis that salivary proteins from geographically distant Phlebotomus duboscqi sandfly populations are highly divergent due to the pressure exerted by the host immune response. Salivary gland cDNA libraries were prepared from wild-caught P. duboscqi from Mali and recently colonised flies of the same species from Kenya.ResultsTranscriptome and proteome analysis resulted in the identification of the most abundant salivary gland-secreted proteins. Orthologues of these salivary proteins were identified by phylogenetic tree analysis. Moreover, comparative analysis between the orthologues of these two different populations resulted in a high level of protein identity, including the predicted MHC class II T-cell epitopes from all these salivary proteins.ConclusionThese data refute the hypothesis that salivary proteins from geographically distinct populations of the same Phlebotomus sandfly species are highly divergent. They also suggest the potential for using the same species-specific components in a potential vector saliva-based vaccine.


Journal of Biological Chemistry | 2011

Structure and function of a "yellow" protein from saliva of the sand fly Lutzomyia longipalpis that confers protective immunity against Leishmania major infection.

X. Xu; Fabiano Oliveira; B.W. Chang; Nicolas Collin; Regis Gomes; Clarissa Teixeira; David Reynoso; V. My Pham; D.E. Elnaiem; Shaden Kamhawi; José M. C. Ribeiro; Jesus G. Valenzuela; J.F. Andersen

LJM11, an abundant salivary protein from the sand fly Lutzomyia longipalpis, belongs to the insect “yellow” family of proteins. In this study, we immunized mice with 17 plasmids encoding L. longiplapis salivary proteins and demonstrated that LJM11 confers protective immunity against Leishmania major infection. This protection correlates with a strong induction of a delayed type hypersensitivity (DTH) response following exposure to L. longipalpis saliva. Additionally, splenocytes of exposed mice produce IFN-γ upon stimulation with LJM11, demonstrating the systemic induction of Th1 immunity by this protein. In contrast to LJM11, LJM111, another yellow protein from L. longipalpis saliva, does not produce a DTH response in these mice, suggesting that structural or functional features specific to LJM11 are important for the induction of a robust DTH response. To examine these features, we used calorimetric analysis to probe a possible ligand binding function for the salivary yellow proteins. LJM11, LJM111, and LJM17 all acted as high affinity binders of prohemostatic and proinflammatory biogenic amines, particularly serotonin, catecholamines, and histamine. We also determined the crystal structure of LJM11, revealing a six-bladed β-propeller fold with a single ligand binding pocket located in the central part of the propeller structure on one face of the molecule. A hypothetical model of LJM11 suggests a positive electrostatic potential on the face containing entry to the ligand binding pocket, whereas LJM111 is negative to neutral over its entire surface. This may be the reason for differences in antigenicity between the two proteins.

Collaboration


Dive into the Fabiano Oliveira's collaboration.

Top Co-Authors

Avatar

Jesus G. Valenzuela

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shaden Kamhawi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarissa Teixeira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Regis Gomes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Claudio Meneses

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer M. Anderson

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge