Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesus G. Valenzuela is active.

Publication


Featured researches published by Jesus G. Valenzuela.


Nature Immunology | 2003

Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells

Julio Aliberti; Jesus G. Valenzuela; Vern B. Carruthers; Sara Hieny; John F. Andersen; Hugues Charest; Caetano Reis e Sousa; Alan H. Fairlamb; José M. C. Ribeiro; Alan Sher

Toxoplasma gondii releases factors that potently stimulate production of interleukin-12 (IL-12) from dendritic cells (DCs). Purification of this activity showed that cyclophilin-18 (C-18) was its principal component, and antibodies generated against recombinant C-18 inhibited tachyzoite extract–induced synthesis of IL-12. Recombinant C-18 showed high affinity for and triggered cell signaling through CCR5, a chemokine receptor important in parasite-induced IL-12 production by DCs. These findings suggest that the unusual potency of T. gondii in inducing IL-12 from DCs results from its synthesis of a unique chemokine mimic that signals through CCR5. The ability to generate this strong protective response may benefit parasite transmission by preventing the protozoan from overwhelming its intermediate hosts.


Cell | 2004

A Role for Insect Galectins in Parasite Survival

Shaden Kamhawi; Marcelo Ramalho-Ortigao; Van M. Pham; Sanjeev Kumar; Phillip G. Lawyer; Salvatore J. Turco; Carolina Barillas-Mury; David L. Sacks; Jesus G. Valenzuela

Insect galectins are associated with embryonic development or immunity against pathogens. Here, we show that they can be exploited by parasites for survival in their insect hosts. PpGalec, a tandem repeat galectin expressed in the midgut of the sandfly Phlebotomus papatasi, is used by Leishmania major as a receptor for mediating specific binding to the insect midgut, an event crucial for parasite survival, and accounts for species-specific vector competence for the most widely distributed form of cutaneous leishmaniasis in the Old World. In addition, these studies demonstrate the feasibility of using midgut receptors for parasite ligands as target antigens for transmission-blocking vaccines.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Immunity to a salivary protein of a sand fly vector protects against the fatal outcome of visceral leishmaniasis in a hamster model

Regis Gomes; Clarissa Teixeira; Maria Jânia Teixeira; Fabiano Oliveira; Maria José Menezes; Claire Silva; Camila I. de Oliveira; José Carlos Miranda; Dia-Eldin Elnaiem; Shaden Kamhawi; Jesus G. Valenzuela; Cláudia Brodskyn

Visceral leishmaniasis (VL) is a fatal disease for humans, and no vaccine is currently available. Sand fly salivary proteins have been associated with protection against cutaneous leishmaniasis. To test whether vector salivary proteins can protect against VL, a hamster model was developed involving intradermal inoculation in the ears of 100,000 Leishmania infantum chagasi parasites together with Lutzomyia longipalpis saliva to mimic natural transmission by sand flies. Hamsters developed classical signs of VL rapidly, culminating in a fatal outcome 5–6 months postinfection. Saliva had no effect on the course of infection in this model. Immunization with 16 DNA plasmids coding for salivary proteins of Lu. longipalpis resulted in the identification of LJM19, a novel 11-kDa protein, that protected hamsters against the fatal outcome of VL. LJM19-immunized hamsters maintained a low parasite load that correlated with an overall high IFN-γ/TGF-β ratio and inducible NOS expression in the spleen and liver up to 5 months postinfection. Importantly, a delayed-type hypersensitivity response with high expression of IFN-γ was also noted in the skin of LJM19-immunized hamsters 48 h after exposure to uninfected sand fly bites. Induction of IFN-γ at the site of bite could partly explain the protection observed in the viscera of LJM19-immunized hamsters through direct parasite killing and/or priming of anti-Leishmania immunity. We have shown that immunity to a defined salivary protein (LJM19) confers powerful protection against the fatal outcome of a parasitic disease, which reinforces the concept of using components of arthropod saliva in vaccine strategies against vector-borne diseases.


Insect Biochemistry and Molecular Biology | 2003

Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito

Jesus G. Valenzuela; Ivo M. B. Francischetti; Van M. Pham; Mark Garfield; José M. C. Ribeiro

Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their expression confirmed by amino terminal sequencing. In this paper, we randomly sequenced a full-length cDNA library of An. stephensi and performed Edman degradation of polyvinylidene difluoride (PVDF)-transferred protein bands from salivary homogenates. Twelve of 13 proteins found by aminoterminal degradation were found among the cDNA clusters of the library. Thirty-three full-length novel cDNA sequences are reported, including a novel secreted galectin; the homologue of anophelin, a thrombin inhibitor; a novel trypsin/chymotrypsin inhibitor; an apyrase; a lipase; and several new members of the D7 protein family. Most of the novel proteins have no known function. Comparison of the putatively secreted and putatively housekeeping proteins of An. stephensi with An. gambiae proteins indicated that the salivary gland proteins are at a faster evolutionary pace. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed. The electronic tables and supplemental material are available at http://www.ncbi.nlm.nih.gov/projects/Mosquito/A_stephensi_sialome/ .


Insect Biochemistry and Molecular Biology | 2002

Toward a description of the sialome of the adult female mosquito Aedes aegypti

Jesus G. Valenzuela; Van M. Pham; Mark Garfield; Ivo M. B. Francischetti; José M. C. Ribeiro

To describe the set of mRNA and protein expressed in the salivary glands (sialome) of Aedes aegypti mosquitoes, we randomly sequenced a full-length cDNA library of this insect and performed Edman degradation of PVDF-transferred protein bands from salivary homogenates. We found 238 cDNA clusters which contained those coding for 10 of the 11 proteins found by aminoterminal degradation. All six previously described salivary proteins were found in this library. Full-length sequences of 32 novel cDNA sequences are reported, one of which is the product of a transposable element. Among the 31 novel protein sequences are 4 additional members of the D7 protein family; 4 novel members of the antigen 5 family (a protein family not reported in Aedes); a novel serpin; a novel member of the 30-kDa allergen of Ae. Aegypti; a secreted calreticulin; 2 proteins similar to mammalian angiopoietins; adenosine deaminase; purine hydrolase; lysozyme; a C-type lectin; 3 serine proteases, including one with high similarity to Bombyx prophenoloxidase activating enzyme; 2 proteins related to invertebrate immunity; and several sequences that have no significant matches to known proteins. The possible role of these proteins in blood and sugar feeding by the mosquito is discussed.


The Journal of Experimental Biology | 2005

An updated catalogue of salivary gland transcripts in the adult female mosquito, Anopheles gambiae

Bruno Arcà; Fabrizio Lombardo; Jesus G. Valenzuela; Ivo M. B. Francischetti; Osvaldo Marinotti; M. Coluzzi; José M. C. Ribeiro

SUMMARY Salivary glands of blood-sucking arthropods contain a variety of compounds that prevent platelet and clotting functions and modify inflammatory and immunological reactions in the vertebrate host. In mosquitoes, only the adult female takes blood meals, while both sexes take sugar meals. With the recent description of the Anopheles gambiae genome, and with a set of∼ 3000 expressed sequence tags from a salivary gland cDNA library from adult female mosquitoes, we attempted a comprehensive description of the salivary transcriptome of this most important vector of malaria transmission. In addition to many transcripts associated with housekeeping functions, we found an active transposable element, a set of Wolbachia-like proteins, several transcription factors, including Forkhead, Hairy and doublesex, extracellular matrix components and 71 genes coding for putative secreted proteins. Fourteen of these 71 proteins had matching Edman degradation sequences obtained from SDS-PAGE experiments. Overall, 33 transcripts are reported for the first time as coding for salivary proteins. The tissue and sex specificity of these protein-coding transcripts were analyzed by RT–PCR and microarray experiments for insight into their possible function. Notably, two gene products appeared to be differentially spliced in the adult female salivary glands, whereas 13 contigs matched predicted intronic regions and may include additional alternatively spliced transcripts. Most An. gambiae salivary proteins represent novel protein families of unknown function, potentially coding for pharmacologically or microbiologically active substances. Supplemental data to this work can be found at http://www.ncbi.nlm.nih.gov/projects/omes/index.html#Ag2.


BMC Genomics | 2006

Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis

Jennifer M. Anderson; Fabiano Oliveira; Shaden Kamhawi; Ben J. Mans; David Reynoso; Amy E. Seitz; Phillip G. Lawyer; Mark Garfield; MyVan Pham; Jesus G. Valenzuela

BackgroundImmune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies, particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine.ResultsTwo salivary gland cDNA libraries from female sandflies Phlebotomus argentipes and P. perniciosus were constructed, sequenced and proteomic analysis of the salivary proteins was performed. The majority of the sequenced transcripts from the two cDNA libraries coded for secreted proteins. In this analysis we identified transcripts coding for protein families not previously described in sandflies. A comparative sandfly salivary transcriptome analysis was performed by using these two cDNA libraries and two other sandfly salivary gland cDNA libraries from P. ariasi and Lutzomyia longipalpis, also vectors of visceral leishmaniasis. Full-length secreted proteins from each sandfly library were compared using a stand-alone version of BLAST, creating formatted protein databases of each sandfly library. Related groups of proteins from each sandfly species were combined into defined families of proteins. With this comparison, we identified families of salivary proteins common among all of the sandflies studied, proteins to be genus specific and proteins that appear to be species specific. The common proteins included apyrase, yellow-related protein, antigen-5, PpSP15 and PpSP32-related protein, a 33-kDa protein, D7-related protein, a 39- and a 16.1- kDa protein and an endonuclease-like protein. Some of these families contained multiple members, including PPSP15-like, yellow proteins and D7-related proteins suggesting gene expansion in these proteins.ConclusionThis comprehensive analysis allows us the identification of genus- specific proteins, species-specific proteins and, more importantly, proteins common among these different sandflies. These results give us insights into the repertoire of salivary proteins that are potential candidates for a vector-based vaccine.


The Journal of Infectious Diseases | 2002

Seroconversion against Lutzomyia longipalpis Saliva Concurrent with the Development of Anti–Leishmania chagasi Delayed-Type Hypersensitivity

Regis Gomes; Cláudia Brodskyn; Camila I. de Oliveira; Jackson Maurício Lopes Costa; José Carlos Miranda; Arlene de Jesus Mendes Caldas; Jesus G. Valenzuela; Manoel Barral-Netto; Aldina Barral

Antibody responses to salivary gland sonicate (SGS) from Lutzomyia longipalpis were investigated using serum samples from individuals living in an area where visceral leishmaniasis is endemic. Individuals were classified into 2 groups, according to the alteration of their responses to Leishmania chagasi antigen over the course of 6 months. Group 1 included children who experienced anti-L. chagasi seroconversion from negative to positive; group 2 included children who experienced delayed-type hypersensitivity (DTH) response to L. chagasi antigen conversion from negative to positive. Individuals who experienced seroconversion against L. chagasi antigens did not have increased anti-saliva antibody response, whereas those who developed a positive anti-L. chagasi DTH response had increased immunoglobulin (Ig) G, IgG1 and IgE anti-SGS antibody levels. Despite wide variation, serum samples from individuals in group 2 recognized more bands in SGS than did those from individuals in group 1. This simultaneous appearance of anti-saliva humoral response and anti-L. chagasi cell-mediated immunity supports the hypothesis that induction of immune response against SGS can facilitate induction of a protective response against leishmaniasis.


Immunological Reviews | 2011

Vaccines to combat the neglected tropical diseases

Jeffrey M. Bethony; Rhea N. Cole; Xiaoti Guo; Shaden Kamhawi; Marshall W. Lightowlers; Alex Loukas; William A. Petri; Steven G. Reed; Jesus G. Valenzuela; Peter J. Hotez

Summary:  The neglected tropical diseases (NTDs) represent a group of parasitic and related infectious diseases such as amebiasis, Chagas disease, cysticercosis, echinococcosis, hookworm, leishmaniasis, and schistosomiasis. Together, these conditions are considered the most common infections in low‐ and middle‐income countries, where they produce a level of global disability and human suffering equivalent to better known conditions such as human immunodeficiency virus/acquired immunodeficiency syndrome and malaria. Despite their global public health importance, progress on developing vaccines for NTD pathogens has lagged because of some key technical hurdles and the fact that these infections occur almost exclusively in the world’s poorest people living below the World Bank poverty line. In the absence of financial incentives for new products, the multinational pharmaceutical companies have not embarked on substantive research and development programs for the neglected tropical disease vaccines. Here, we review the current status of scientific and technical progress in the development of new neglected tropical disease vaccines, highlighting the successes that have been achieved (cysticercosis and echinococcosis) and identifying the challenges and opportunities for development of new vaccines for NTDs. Also highlighted are the contributions being made by non‐profit product development partnerships that are working to overcome some of the economic challenges in vaccine manufacture, clinical testing, and global access.


Journal of Biological Chemistry | 1998

Purification, Cloning, and Expression of an Apyrase from the Bed Bug Cimex lectularius A NEW TYPE OF NUCLEOTIDE-BINDING ENZYME

Jesus G. Valenzuela; Rosane Charlab; Michael Y. Galperin; José M. C. Ribeiro

An enzyme that hydrolyzes the phosphodiester bonds of nucleoside tri- and diphosphates, but not monophosphates, thus displaying apyrase (EC 3.6.1.5) activity, was purified from salivary glands of the bed bug, Cimex lectularius. The purifiedC. lectularius apyrase was an acidic protein with a pI of 5.1 and molecular mass of ∼40 kDa that inhibited ADP-induced platelet aggregation and hydrolyzed platelet agonist ADP with specific activity of 379 units/mg protein. Amplification of C. lectulariuscDNA corresponding to the N-terminal sequence of purified apyrase produced a probe that allowed identification of a 1.3 kilobase pair cDNA clone coding for a protein of 364 amino acid residues, the first 35 of which constituted the signal peptide. The processed form of the protein was predicted to have a molecular mass of 37.5 kDa and pI of 4.95. The identity of the product of the cDNA clone with nativeC. lectularius apyrase was proved by immunological testing and by expressing the gene in a heterologous host. Immune serum made against a synthetic peptide with sequence corresponding to the C-terminal region of the predicted cDNA clone recognized bothC. lectularius apyrase fractions eluted from a molecular sieving high pressure liquid chromatography and the apyrase active band from chromatofocusing gels. Furthermore, transfected COS-7 cells secreted a Ca2+-dependent apyrase with a pI of 5.1 and immunoreactive material detected by the anti-apyrase serum.C. lectularius apyrase has no significant sequence similarity to any other known apyrases, but homologous sequences have been found in the genome of the nematode C. elegansand in mouse and human expressed sequence tags from fetal and tumor EST libraries.

Collaboration


Dive into the Jesus G. Valenzuela's collaboration.

Top Co-Authors

Avatar

Shaden Kamhawi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

José M. C. Ribeiro

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Fabiano Oliveira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jennifer M. Anderson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clarissa Teixeira

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

John F. Andersen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Regis Gomes

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ryan C. Jochim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Van M. Pham

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge