Samuel C. V. Martins
Universidade Federal de Viçosa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Samuel C. V. Martins.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Timothy J. Brodribb; Scott A. M. McAdam; Gregory J. Jordan; Samuel C. V. Martins
Significance A major determinant of plant species distribution on Earth is a specific tolerance to soil drying, yet there are currently no functional or anatomical characteristics that can predict species’ requirement for rainfall. This study examines the systems responsible for controlling water delivery and water loss in the leaves of conifers and finds functional evidence of how conifers have evolved in drying climates over the course of the last 150 million years. Two “strategies” for conserving water during water stress emerged. One group relied on the plant hormone abscisic acid to maintain stomata closed during sustained drought, and another, more derived group allowed leaves to dehydrate and resisted damage by producing a water transport system capable of functioning under the extreme tension that develops in water-stressed plants. Water stress is one of the primary selective forces in plant evolution. There are characters often cited as adaptations to water stress, but links between the function of these traits and adaptation to drying climates are tenuous. Here we combine distributional, climatic, and physiological evidence from 42 species of conifers to show that the evolution of drought resistance follows two distinct pathways, both involving the coordinated evolution of tissues regulating water supply (xylem) and water loss (stomatal pores) in leaves. Only species with very efficient stomatal closure, and hence low minimum rates of water loss, inhabit dry habitats, but species diverged in their apparent mechanism for maintaining closed stomata during drought. An ancestral mechanism found in Pinaceae and Araucariaceae species relies on high levels of the hormone abscisic acid (ABA) to close stomata during water stress. A second mechanism, found in the majority of Cupressaceae species, uses leaf desiccation rather than high ABA levels to close stomata during sustained water stress. Species in the latter group were characterized by xylem tissues with extreme resistance to embolism but low levels of foliar ABA after 30 d without water. The combination of low levels of ABA under stress with cavitation-resistant xylem enables these species to prolong stomatal opening during drought, potentially extending their photosynthetic activity between rainfall events. Our data demonstrate a surprising simplicity in the way conifers evolved to cope with water shortage, indicating a critical interaction between xylem and stomatal tissues during the process of evolution to dry climates.
Journal of Plant Physiology | 2010
Marcelo Francisco Pompelli; Samuel C. V. Martins; Werner C. Antunes; Agnaldo Rodrigues de Melo Chaves; Fábio M. DaMatta
Coffee is native to shady environments but often grows better and produces higher yields without shade, though at the expense of high fertilization inputs, particularly nitrogen (N). Potted plants were grown under full sunlight and shade (50%) conditions and were fertilized with nutrient solutions containing either 0 or 23 mM N. Measurements were made in southeastern Brazil during winter conditions, when relatively low night temperatures and high diurnal insolation are common. Overall, the net carbon assimilation rate was quite low, which was associated with diffusive, rather than biochemical, constraints. N deficiency led to decreases in the concentrations of chlorophylls (Chl) and total carotenoids as well as in the Chl/N ratio. These conditions also led to qualitative changes in the carotenoid composition, e.g., increased antheraxanthin (A) and zeaxanthin (Z) pools on a Chl basis, particularly at high light, which was linked to increased thermal dissipation of absorbed light. The variable-to-maximum fluorescence ratio at predawn decreased with increasing A+Z pools and decreased linearly with decreasing N. We showed that this ratio was inadequate for assessing photoinhibition under N limitation. Expressed per unit mass, the activities of superoxide dismutase and glutathione reductase were not altered with the treatments. In contrast, ascorbate peroxidase activity was lower in low N plants, particularly under shade, whereas catalase activity was lower in shaded plants than in sun-grown plants, regardless of the N level. Glutamine synthetase activity was greater in sun-grown plants than in shaded individuals at a given N level and decreased with decreasing N application. Our results suggest that the photoprotective and antioxidant capacity per amount of photons absorbed was up-regulated by a low N supply; nevertheless, this capacity, regardless of the light conditions, was not enough to prevent oxidative damage, as judged from the increases in the H(2)O(2) and malondialdehyde concentrations and electrolyte leakage. We demonstrated that N fertilization could adequately protect the coffee plants against photodamage independently of the anticipated positive effects of N on the photosynthetic capacity.
New Phytologist | 2012
Kelly C. Detmann; Wagner L. Araújo; Samuel C. V. Martins; Lílian M. V. P. Sanglard; Josimar V. Reis; Edenio Detmann; Fabrício Ávila Rodrigues; Adriano Nunes-Nesi; Alisdair R. Fernie; Fábio M. DaMatta
Silicon (Si) is not considered to be an essential element for higher plants and is believed to have no effect on primary metabolism in unstressed plants. In rice (Oryza sativa), Si nutrition improves grain production; however, no attempt has been made to elucidate the physiological mechanisms underlying such responses. Here, we assessed crop yield and combined advanced gas exchange analysis with carbon isotope labelling and metabolic profiling to measure the effects of Si nutrition on rice photosynthesis, together with the associated metabolic changes, by comparing wild-type rice with the low-Si rice mutant lsi1 under unstressed conditions. Si improved the harvest index, paralleling an increase in nitrogen use efficiency. Higher crop yields associated with Si nutrition exerted a feed-forward effect on photosynthesis which was fundamentally associated with increased mesophyll conductance. By contrast, Si nutrition did not affect photosynthetic gas exchange during the vegetative growth phase or in de-grained plants. In addition, Si nutrition altered primary metabolism by stimulating amino acid remobilization. Our results indicate a stimulation of the source capacity, coupled with increased sink demand, in Si-treated plants; therefore, we identify Si nutrition as an important target in attempts to improve the agronomic yield of rice.
New Phytologist | 2008
Fábio M. DaMatta; R. L. Cunha; Werner C. Antunes; Samuel C. V. Martins; Wagner L. Araújo; Alisdair R. Fernie; Gustavo A. B. K. Moraes
Perturbations of the source-sink balances were performed in field-grown coffee (Coffea arabica) trees to investigate the possible role of carbohydrates in feedback regulation of photosynthesis. Four treatments were applied at the whole-plant level: (i) complete defruiting and maintenance of the full leaf area, (ii) the half crop load and full leaf area, (iii) the full crop load and full leaf area and (iv) the full crop load and half leaf area. Sampling and measurements were performed twice during the phase of dry matter accumulation of fruits. Gas exchange, chlorophyll a fluorescence, carbon isotope labelling and steady-state metabolite measurements were assessed in source leaves. The average rate of net photosynthetic rate (A) and stomatal conductance (g(s)) were larger (> 50%), and carbon isotope composition ratio was lower, in trees with a full crop load and half leaf area than in defruited trees, with individuals of the other two treatments showing intermediate values. However, differences in A seem unlikely to have been caused either by photochemical impairments or a direct end-product-mediated feedback down-regulation of photosynthesis. It is proposed that the decreased A in defruited coffee trees was independent of carbon metabolism and was rather directly related to a lower CO(2) availability coupled to lower g(s).
Phytopathology | 2012
Renata Sousa Resende; Fabrício Ávila Rodrigues; Paulo C. Cavatte; Samuel C. V. Martins; Wiler Ribas Moreira; Agnaldo Rodrigues de Melo Chaves; Fábio M. DaMatta
Considering the economic importance of anthracnose, caused by Colletotrichum sublineolum, and silicon (Si) to enhance sorghum resistance against this disease, this study aimed to investigate the effect of this element on leaf gas exchange and also the antioxidative system when infected by C. sublineolum. Plants from sorghum line CMSXS142 (BR 009 [Tx623] - Texas), growing in hydroponic culture with (+Si, 2 mM) or without (-Si) Si, were inoculated with C. sublineolum. Disease severity was assessed at 2, 4, 6, 8, and 10 days after inoculation (dai) and data were used to calculate the area under anthracnose progress curve (AUAPC). Further, the net carbon assimilation rate (A), stomatal conductance to water vapor (g(s)), internal-to-ambient CO₂ concentration ratio (C(i)/C(a)), and transpiration rate (E); the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR); the electrolyte leakage (EL), and the concentrations of hydrogen peroxide (H₂O₂) and malondialdehyde (MDA) were determined. The AUAPC was reduced by 86% for the +Si plants compared with the -Si plants. The values of A, g(s), and E were lower upon inoculation of -Si plants in contrast to inoculated +Si plants with decreases of 31 and 60% for A, 34 and 61% for g(s), and 27 and 57% for E, respectively, at 4 and 8 dai. For the noninoculated plants, there was no significant difference between the -Si and +Si treatments for the values of A, g(s), and E. The C(i)/C(a) ratio was similar between the -Si and +Si treatments, regardless of the pathogen inoculation. The activities of SOD, CAT, APX, and GR tended to be higher in the +Si plants compared with the -Si plants upon inoculation with C. sublineolum. The EL significantly increased for -Si plants compared with +Si plants. The MDA concentration significantly increased by 31 and 38% at 4 and 8 dai, respectively, for the -Si plants compared with the +Si plants. Based on these results, Si may have a positive effect on sorghum physiology when infected by C. sublineolum through the maintenance of carbon fixation and also by enhancing the antioxidant system, which resulted in an increase in reactive oxygen species scavenging and, ultimately, reduced damage to the cell membranes.
Physiologia Plantarum | 2012
Paulo C. Cavatte; Álvaro A. G. Oliveira; Leandro E. Morais; Samuel C. V. Martins; Lílian M. V. P. Sanglard; Fábio M. DaMatta
Based on indirect evidence, it was previously suggested that shading could attenuate the negative impacts of drought on coffee (Coffea arabica), a tropical crop species native to shady environments. A variety (47) of morphological and physiological traits were examined in plants grown in 30-l pots in either full sunlight or 85% shade for 8 months, after which a 4-month water shortage was implemented. Overall, the traits showed weak or negligible responses to the light × water interaction, explaining less than 10% of the total data variation. Only slight variations in biomass allocation were observed in the combined shade and drought treatment. Differences in relative growth rates were mainly associated with physiological and not with morphological adjustments. In high light, drought constrained the photosynthetic rate through stomatal limitations with no sign of apparent photoinhibition; in low light, such constraints were apparently linked to biochemical factors. Sun-grown plants displayed osmotic adjustments, decreased tissue elasticities and improved long-term water use efficiencies, especially under drought. Regardless of the water availability, higher concentrations of lipids, total phenols, total soluble sugars and lignin were found in high light compared to shade conditions, in contrast to the effects on cellulose and hemicellulose concentrations. Proline concentrations increased in water-deprived plants, particularly those grown under full sun. Phenotypic plasticity was much higher in response to the light than to the water supply. Overall, shading did not alleviate the negative impacts of drought on the coffee tree.
Physiologia Plantarum | 2014
Lílian M. V. P. Sanglard; Samuel C. V. Martins; Kelly C. Detmann; Paulo E. M. Silva; Alyne O. Lavinsky; Mariela Mattos da Silva; Edenio Detmann; Wagner L. Araújo; Fábio M. DaMatta
Silicon (Si) plays important roles in alleviating various abiotic stresses. In rice (Oryza sativa), arsenic (As) is believed to share the Si transport pathway for entry into roots, and Si has been demonstrated to decrease As concentrations. However, the physiological mechanisms through which Si might alleviate As toxicity in plants remain poorly elucidated. We combined detailed gas exchange measurements with chlorophyll fluorescence analysis to examine the effects of Si nutrition on photosynthetic performance in rice plants [a wild-type (WT) cultivar and its lsi1 mutant defective in Si uptake] challenged with As (arsenite). As treatment impaired carbon fixation (particularly in the WT genotype) that was unrelated to photochemical or biochemical limitations but, rather, was largely associated with decreased leaf conductance at the stomata and mesophyll levels. Indeed, regardless of the genotypes, in the plants challenged with As, photosynthetic rates correlated strongly with both stomatal (r(2) = 0.90) and mesophyll (r(2) = 0.95) conductances, and these conductances were, in turn, linearly correlated with each other. The As-related impairments to carbon fixation could be considerably reverted by Si in a time- and genotype-dependent manner. In conclusion, we identified Si nutrition as an important target in an attempt to not only decrease As concentrations but also to ameliorate the photosynthetic performance of rice plants challenged with As.
Plant Cell and Environment | 2014
Ying Sun; Lianhong Gu; Robert E. Dickinson; Stephen G. Pallardy; John M. Baker; Yonghui Cao; Fábio M. DaMatta; Xuejun Dong; David S. Ellsworth; Davina Van Goethem; Anna M. Jensen; Beverly E. Law; Rodolfo Araújo Loos; Samuel C. V. Martins; Richard J. Norby; Jeffrey M. Warren; David J. Weston; Klaus Winter
Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (g(m)) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite g(m) results in up to 75% underestimation for maximum carboxylation rate V(cmax), 60% for maximum electron transport rate J(max), and 40% for triose phosphate utilization rate T(u) . V(cmax) is most sensitive, J(max) is less sensitive, and T(u) has the least sensitivity to the variation of g(m). Because of this asymmetrical effect of g(m), the ratios of J(max) to V(cmax), T(u) to V(cmax) and T(u) to J(max) are all overestimated. An infinite g(m) assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying g(m) for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non-linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.
PLOS ONE | 2014
Samuel C. V. Martins; Jeroni Galmés; Paulo C. Cavatte; Lucas Felisberto Pereira; Marília C. Ventrella; Fábio M. DaMatta
It has long been held that the low photosynthetic rates (A) of coffee leaves are largely associated with diffusive constraints to photosynthesis. However, the relative limitations of the stomata and mesophyll to the overall diffusional constraints to photosynthesis, as well as the coordination of leaf hydraulics with photosynthetic limitations, remain to be fully elucidated in coffee. Whether the low actual A under ambient CO2 concentrations is associated with the kinetic properties of Rubisco and high (photo)respiration rates also remains elusive. Here, we provide a holistic analysis to understand the causes associated with low A by measuring a variety of key anatomical/hydraulic and photosynthetic traits in sun- and shade-grown coffee plants. We demonstrate that leaf hydraulic architecture imposes a major constraint on the maximisation of the photosynthetic gas exchange of coffee leaves. Regardless of the light treatments, A was mainly limited by stomatal factors followed by similar limitations associated with the mesophyll and biochemical constraints. No evidence of an inefficient Rubisco was found; rather, we propose that coffee Rubisco is well tuned for operating at low chloroplastic CO2 concentrations. Finally, we contend that large diffusive resistance should lead to large CO2 drawdown from the intercellular airspaces to the sites of carboxylation, thus favouring the occurrence of relatively high photorespiration rates, which ultimately leads to further limitations to A.
Journal of Experimental Botany | 2013
Samuel C. V. Martins; Jeroni Galmés; Arántzazu Molins; Fábio M. DaMatta
Mesophyll conductance (gm) can markedly limit photosynthetic CO2 assimilation and is required to estimate the parameters of the Farquhar–von Caemmerer–Berry (FvCB) model properly. The variable J (electron transport rate) is the most frequently used method for estimating gm, and the correct determination of J is one of its requirements. Recent evidence has shown that calibrating J can lead to some errors in estimating gm, but to what extent the parameterization of the FvCB model is affected by calibrations is not well known. In addition to determining the FvCB parameters, variants of the J calibration method were tested to address whether varying CO2 or light levels, possible alternative electron sinks, or contrasting leaf structural properties might play a role in determining differences in αβ, the product of the leaf absorptance (α) and the photosystem II optical cross-section (β). It was shown that differences in αβ were mainly attributed to the use of A/Ci or A/PPFD curves to calibrate J. The different αβ values greatly influenced gm, leading to a high number of unrealistic values in addition to affecting the estimates of the FvCB model parameters. A new approach was devised to retrieve leaf respiration in the light from combined A/Ci and A/Cc curves and a framework to understand the high variation in observed gm values. Overall, a background is provided to decrease the noise in gm, facilitating data reporting and allowing better retrieval of the information presented in A/Ci and A/Cc curves.
Collaboration
Dive into the Samuel C. V. Martins's collaboration.
Agnaldo Rodrigues de Melo Chaves
Empresa Brasileira de Pesquisa Agropecuária
View shared research outputs