Fabio Rigat
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Rigat.
Lancet Infectious Diseases | 2013
Ulrich Vogel; Muhamed-Kheir Taha; Julio A. Vázquez; Jamie Findlow; Heike Claus; Paola Stefanelli; Dominique A. Caugant; Paula Kriz; Raquel Abad; Stefania Bambini; Anna Carannante; Ala Eddine Deghmane; Cecilia Fazio; Matthias Frosch; Giacomo Frosi; Stefanie Gilchrist; Marzia Monica Giuliani; Eva Hong; Morgan Ledroit; Pietro G Lovaglio; Jay Lucidarme; Martin Musilek; Alessandro Muzzi; Jan Oksnes; Fabio Rigat; Luca Orlandi; Maria Stella; Danielle Thompson; Mariagrazia Pizza; Rino Rappuoli
BACKGROUND A novel multicomponent vaccine against meningococcal capsular group B (MenB) disease contains four major components: factor-H-binding protein, neisserial heparin binding antigen, neisserial adhesin A, and outer-membrane vesicles derived from the strain NZ98/254. Because the public health effect of the vaccine, 4CMenB (Novartis Vaccines and Diagnostics, Siena, Italy), is unclear, we assessed the predicted strain coverage in Europe. METHODS We assessed invasive MenB strains isolated mainly in the most recent full epidemiological year in England and Wales, France, Germany, Italy, and Norway. Meningococcal antigen typing system (MATS) results were linked to multilocus sequence typing and antigen sequence data. To investigate whether generalisation of coverage applied to the rest of Europe, we also assessed isolates from the Czech Republic and Spain. FINDINGS 1052 strains collected from July, 2007, to June, 2008, were assessed from England and Wales, France, Germany, Italy, and Norway. All MenB strains contained at least one gene encoding a major antigen in the vaccine. MATS predicted that 78% of all MenB strains would be killed by postvaccination sera (95% CI 63-90, range of point estimates 73-87% in individual country panels). Half of all strains and 64% of covered strains could be targeted by bactericidal antibodies against more than one vaccine antigen. Results for the 108 isolates from the Czech Republic and 300 from Spain were consistent with those for the other countries. INTERPRETATION MATS analysis showed that a multicomponent vaccine could protect against a substantial proportion of invasive MenB strains isolated in Europe. Monitoring of antigen expression, however, will be needed in the future. FUNDING Novartis Vaccines and Diagnostics.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2004
David Seo; Tao Wang; Holly K. Dressman; Edward E. Herderick; Edwin S. Iversen; Chunming Dong; Korkut Vata; Carmelo A. Milano; Fabio Rigat; Jennifer Pittman; Joseph R. Nevins; Mike West; Pascal J. Goldschmidt-Clermont
Objective—Fulfilling the promise of personalized medicine by developing individualized diagnostic and therapeutic strategies for atherosclerosis will depend on a detailed understanding of the genes and gene variants that contribute to disease susceptibility and progression. To that end, our group has developed a nonbiased approach congruent with the multigenic concept of complex diseases by identifying gene expression patterns highly associated with disease states in human target tissues. Methods and Results—We have analyzed a collection of human aorta samples with varying degrees of atherosclerosis to identify gene expression patterns that predict a disease state or potential susceptibility. We find gene expression signatures that relate to each of these disease measures and are reliable and robust in predicting the classification for new samples with >93% in each analysis. The genes that provide the predictive power include many previously suspected to play a role in atherosclerosis and additional genes without prior association with atherosclerosis. Conclusion—Hence, we are reporting a novel method for generating a molecular phenotype of disease and then identifying genes whose discriminatory capability strongly implicates their potential roles in human atherosclerosis.
Science Translational Medicine | 2015
Syed Sohail Ahmed; Wayne Volkmuth; José S. Duca; Lorenzo Corti; Michele Pallaoro; Alfredo Pezzicoli; Anette Karle; Fabio Rigat; Rino Rappuoli; Vas Narasimhan; Ilkka Julkunen; Arja Vuorela; Outi Vaarala; Hanna Nohynek; Franco Laghi Pasini; Emanuele Montomoli; Claudia Maria Trombetta; Christopher M. Adams; Jonathan B. Rothbard; Lawrence Steinman
Similarity between influenza nucleoprotein and hypocretin receptor 2 may trigger vaccine-associated narcolepsy. Immunological mistaken identity New reports of narcolepsy increased after the vaccination campaign against the 2009 A(H1N1) influenza pandemic in some countries but not others. Now Ahmed et al. examine differences between the vaccines used and find a potential mechanistic explanation for the vaccine-specific effect. They found a peptide in influenza nucleopeptide A that shared protein residues with human hypocretin receptor 2, which has been linked to narcolepsy. The vaccine used in unaffected countries contained less influenza nucleoprotein. Indeed, patients with putative vaccine-associated narcolepsy produced antibodies that cross-reacted to both the influenza and the hypocretin receptor 2 epitopes. Although these data do not demonstrate causation, they provide a possible explanation for the association of this particular influenza vaccination with increased reports of narcolepsy. The sleep disorder narcolepsy is linked to the HLA-DQB1*0602 haplotype and dysregulation of the hypocretin ligand-hypocretin receptor pathway. Narcolepsy was associated with Pandemrix vaccination (an adjuvanted, influenza pandemic vaccine) and also with infection by influenza virus during the 2009 A(H1N1) influenza pandemic. In contrast, very few cases were reported after Focetria vaccination (a differently manufactured adjuvanted influenza pandemic vaccine). We hypothesized that differences between these vaccines (which are derived from inactivated influenza viral proteins) explain the association of narcolepsy with Pandemrix-vaccinated subjects. A mimic peptide was identified from a surface-exposed region of influenza nucleoprotein A that shared protein residues in common with a fragment of the first extracellular domain of hypocretin receptor 2. A significant proportion of sera from HLA-DQB1*0602 haplotype–positive narcoleptic Finnish patients with a history of Pandemrix vaccination (vaccine-associated narcolepsy) contained antibodies to hypocretin receptor 2 compared to sera from nonnarcoleptic individuals with either 2009 A(H1N1) pandemic influenza infection or history of Focetria vaccination. Antibodies from vaccine-associated narcolepsy sera cross-reacted with both influenza nucleoprotein and hypocretin receptor 2, which was demonstrated by competitive binding using 21-mer peptide (containing the identified nucleoprotein mimic) and 55-mer recombinant peptide (first extracellular domain of hypocretin receptor 2) on cell lines expressing human hypocretin receptor 2. Mass spectrometry indicated that relative to Pandemrix, Focetria contained 72.7% less influenza nucleoprotein. In accord, no durable antibody responses to nucleoprotein were detected in sera from Focetria-vaccinated nonnarcoleptic subjects. Thus, differences in vaccine nucleoprotein content and respective immune response may explain the narcolepsy association with Pandemrix.
Vaccine | 2013
Giacomo Frosi; Alessia Biolchi; Morena Lo Sapio; Fabio Rigat; Stefanie Gilchrist; Jay Lucidarme; Jamie Findlow; Ray Borrow; Mariagrazia Pizza; Marzia Monica Giuliani; Duccio Medini
BACKGROUND 4CMenB (Bexsero), a vaccine developed against invasive meningococcal disease caused by capsular group B strains (MenB), was recently licensed for use by the European Medicines Agency. Assessment of 4CMenB strain coverage in specific epidemiologic settings is of primary importance to predict vaccination impact on the burden of disease. The Meningococcal Antigen Typing System (MATS) was developed to predict 4CMenB strain coverage, using serum bactericidal antibody assay with human complement (hSBA) data from a diverse panel of strains not representative of any specific epidemiology. OBJECTIVE To experimentally validate the accuracy of MATS-based predictions against strains representative of a specific epidemiologic setting. METHODS AND RESULTS We used a stratified sampling method to identify a representative sample from all MenB disease isolates collected from England and Wales in 2007-2008, tested the strains in the hSBA assay with pooled sera from infant and adolescent vaccinees, and compared these results with MATS. MATS predictions and hSBA results were significantly associated (P=0.022). MATS predicted coverage of 70% (95% CI, 55-85%) was largely confirmed by 88% killing in the hSBA (95% CI, 72-95%). MATS had 78% accuracy and 96% positive predictive value against hSBA. CONCLUSION MATS is a conservative predictor of strain coverage by the 4CMenB vaccine in infants and adolescents.
Bayesian Analysis | 2006
Fabio Rigat; M.C.M. de Gunst; J. van Pelt
This paper illustrates a novel hierarchical dynamic Bayesian network modelling the spiking patterns of neuronal ensembles over time. We introduce, at separate model stages, the parameters characterizing the discrete-time spiking process, the unknown structure of the functional connections among the analysed neurons and its dependence on their spatial arrangement. Estimates for all model parameters and predictions for future spiking states are computed under the Bayesian paradigm via the standard Gibbs sampler using a shrinkage prior. The adequacy of the model is investigated by plotting the residuals and by applying the time-rescaling theorem. We analyse a simulated dataset and a set of experimental multiple spike trains obtained from a culture of neurons in vitro. For the latter data, we nd that one neuron plays a pivotal role for the initiation of each cycle of network activity and that the estimated network structure signicantly depends on the spatial arrangement of the neurons.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Massimiliano Biagini; Marco Spinsanti; Gabriella De Angelis; Ilaria Ferlenghi; Maria Scarselli; Fabio Rigat; Nicola Messuti; Alessia Biolchi; Alessandro Muzzi; Giulia Anderloni; Brunella Brunelli; Elena Cartocci; Francesca Buricchi; Chiara Tani; Maria Stella; Monica Moschioni; Elena Del Tordello; Annalisa Colaprico; Silvana Savino; Marzia Monica Giuliani; Isabel Delany; Mariagrazia Pizza; Paolo Costantino; Nathalie Norais; Rino Rappuoli; Vega Masignani
Significance Complement is the main line of defense against bacterial pathogens; however, the molecular mechanisms triggering killing are largely unknown. Factor H binding protein (fHbp) is a component of two licensed vaccines against serogroup B meningococcus and a key target of complement-mediated bacterial killing. Selected reaction monitoring was used for the absolute quantification of fHbp on invasive meningococcal strains, showing that expression among strains can vary at least 15-fold and a minimum of 757 molecules separated by not more than 130 nm are required to engage C1q and kill the bacteria. Furthermore, the amount of fHbp is genetically determined by the sequence of the promoter region and correlated with the bactericidal activity. These findings increase the understanding of complement-mediated killing and vaccine protection. Factor H binding protein (fHbp) is a lipoprotein of Neisseria meningitidis important for the survival of the bacterium in human blood and a component of two recently licensed vaccines against serogroup B meningococcus (MenB). Based on 866 different amino acid sequences this protein is divided into three variants or two families. Quantification of the protein is done by immunoassays such as ELISA or FACS that are susceptible to the sequence variation and expression level of the protein. Here, selected reaction monitoring mass spectrometry was used for the absolute quantification of fHbp in a large panel of strains representative of the population diversity of MenB. The analysis revealed that the level of fHbp expression can vary at least 15-fold and that variant 1 strains express significantly more protein than variant 2 or variant 3 strains. The susceptibility to complement-mediated killing correlated with the amount of protein expressed by the different meningococcal strains and this could be predicted from the nucleotide sequence of the promoter region. Finally, the absolute quantification allowed the calculation of the number of fHbp molecules per cell and to propose a mechanistic model of the engagement of C1q, the recognition component of the complement cascade.
Vaccine | 2014
Chiara Tani; Maria Stella; Danilo Donnarumma; Massimiliano Biagini; Pierino Parente; Alessandro Vadi; Claudia Magagnoli; Paolo Costantino; Fabio Rigat; Nathalie Norais
Meningococcal disease is a major cause of morbidity and mortality worldwide. Its epidemiology is currently dominated by five capsular serogroups (A, B, C, W, and Y). While effective vaccines already exist for serogroups A, C, W and Y, except for under clonal outbreaks, no vaccine was available against serogroup B. Recently, a four component vaccine, Bexsero(®), designed to prevent infection caused by this serogroup, has been approved in Europe and other Countries for use in individuals from two months of age and older. The active components of this vaccine are three recombinant proteins identified by reverse vaccinology combined with detergent extracted outer membrane vesicles (DOMV) prepared from a New Zealand epidemic strain. Considering their intrinsic complexity, we performed additional characterization of DOMVs on top of the standard quality control testing carried out for batch release. We applied the Hi3 label-free LC-MS(E) methodology to qualitatively and quantitatively characterize the DOMV protein content. We first, successfully investigated the robustness and the accuracy of the methodology for the DOMV characterization and we then applied it to compare six DOMV production lots. Around 100 proteins were quantified from each preparation. When classified according to their predicted cellular localization, about 90% of the total protein amount belongs consistently to the outer membrane compartment. Using nonparametric hypothesis testing and complementary log-log linear regression, the quantifications of a subset of 21 proteins common to all lots and including approximately 90% (85-92%) of the total protein amount quantified in any DOMV lot were found consistent across lots. The relevance of these results is two-fold, showing that the Hi3 quantification methodology is robust for a broad range of proteins and indicating that the manufacturing process currently used for the production of the Bexsero(®) DOMV components is highly reproducible and consistent.
Clinical Infectious Diseases | 2016
Monica Fabbrini; Fabio Rigat; C. Daniela Rinaudo; Irene Passalaqua; Sceida Khacheh; Roberta Creti; Lucilla Baldassarri; Filippo Carboni; Giulia Anderloni; Roberto Rosini; Domenico Maione; Guido Grandi; John L. Telford; Immaculada Margarit
BACKGROUND Group B Streptococcus (GBS) is a major cause of neonatal sepsis and meningitis. A vaccine targeting pregnant women could protect infants through placentally transferred antibodies. The association between GBS maternal antibody concentrations and the risk of neonatal infection has been investigated in US and African populations. Here we studied naturally acquired immunoglobulin G (IgG) responses to GBS capsular polysaccharides (CPS) and pilus proteins in European pregnant women. METHODS Maternal sera were prospectively collected in 8 EU countries from 473 GBS non-colonized and 984 colonized pregnant women who delivered healthy neonates and from 153 mothers of infants with GBS disease. GBS strains from these colonized women and infected infants were obtained in parallel and their capsular and pilus types were identified by serological and molecular methods. Maternal serum concentrations of IgG anti- Ia, -Ib, -III and -V polysaccharides and anti-BP-1, -AP1-2a and -BP-2b pilus proteins were determined by enzyme-linked immunosorbent assay. Antibody functional activity was quantified by Opsonophagocytic Killing Assay. RESULTS Antibody levels against CPS and pilus proteins were significantly higher in GBS colonized women delivering healthy babies than in mothers of neonates with GBS disease or non-colonized women. Moreover, maternal anti-capsular IgG concentrations showed a significant correlation with functional titers measured by Opsonophagocytic Killing Assay. CONCLUSIONS Maternal anti-capsular IgG concentrations above 1 µg/mL mediated GBS killing in vitro and were predicted to respectively reduce by 81% (95% confidence interval, 40%-100%) and 78% (45%-100%) the risk of GBS Ia and III early-onset disease in Europe.
The Annals of Applied Statistics | 2009
Fabio Rigat; Jim Q. Smith
This paper illustrates novel methods for nonstationary time series modeling along with their applications to selected problems in neuroscience. These methods are semi-parametric in that inferences are derived by combining sequential Bayesian updating with a non-parametric change-point test. As a test statistic, we propose a Kullback-Leibler (KL) divergence between posterior distributions arising from different sets of data. A closed form expression of this statistic is derived for exponential family models, whereas standard Markov chain Monte Carlo output is used to approximate its value and its critical region for more general models. The behavior of one-step ahead predictive distributions under our semi-parametric framework is described analytically for a dynamic linear time series model. Conditions under which our approach reduces to fully parametric state-space modeling are also illustrated. We apply our methods to estimating the functional dynamics of a wide range of neural data, including multi-channel electroencephalogram recordings, longitudinal behavioral experiments and in-vivo multiple spike trains recordings. The estimated dynamics are related to the presentation of visual stimuli, to the evaluation of a learning performance and to changes in the functional connections between neurons over a sequence of experiments.
Statistics in Medicine | 2012
Giorgos Minas; Fabio Rigat; Thomas E. Nichols; John A. D. Aston; Nigel Stallard
In multivariate clinical trials, a key research endpoint is ascertaining whether a candidate treatment is more efficacious than an established alternative. This global endpoint is clearly of high practical value for studies, such as those arising from neuroimaging, where the outcome dimensions are not only numerous but they are also highly correlated and the available sample sizes are typically small. In this paper, we develop a two-stage procedure testing the null hypothesis of global equivalence between treatments effects and demonstrate its application to analysing phase II neuroimaging trials. Prior information such as suitable statistics of historical data or suitably elicited expert clinical opinions are combined with data collected from the first stage of the trial to learn a set of optimal weights. We apply these weights to the outcome dimensions of the second-stage responses to form the linear combination z and t tests statistics while controlling the tests false positive rate. We show that the proposed tests hold desirable asymptotic properties and characterise their power functions under wide conditions. In particular, by comparing the power of the proposed tests with that of Hotellings T(2), we demonstrate their advantages when sample sizes are close to the dimension of the multivariate outcome. We apply our methods to fMRI studies, where we find that, for sufficiently precise first stage estimates of the treatment effect, standard single-stage testing procedures are outperformed.