Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabiola Giusti is active.

Publication


Featured researches published by Fabiola Giusti.


Journal of Bacteriology | 2008

A Second Pilus Type in Streptococcus pneumoniae Is Prevalent in Emerging Serotypes and Mediates Adhesion to Host Cells

Fabio Bagnoli; Monica Moschioni; Claudio Donati; Valentina Dimitrovska; Ilaria Ferlenghi; Claudia Facciotti; Alessandro Muzzi; Fabiola Giusti; Carla Emolo; Antonella Sinisi; Markus Hilleringmann; Werner Pansegrau; Stefano Censini; Rino Rappuoli; Antonello Covacci; Vega Masignani; Michèle A. Barocchi

Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element containing genes typical of gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (consisting of pitA, sipA, pitB, srtG1, and srtG2) codes for a second functional pilus in pneumococcus. Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. Presence of PI-2 correlates with the genotype as defined by multilocus sequence typing and clonal complex (CC). The PI-2-positive CCs are associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging serotypes in both industrialized and developing countries. Interestingly, strains belonging to CC271 (where sequence type 271 is the predicted founder of the CC) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that play a role in the initial host cell contact to the respiratory tract and are potential antigens for inclusion in a new generation of pneumococcal vaccines.


Journal of Virology | 2008

Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer

Rafael Contreras-Galindo; Mark H. Kaplan; Philippe Leissner; Thibault Verjat; Ilaria Ferlenghi; Fabio Bagnoli; Fabiola Giusti; Michael H. Dosik; Daniel F. Hayes; Scott D. Gitlin; David M. Markovitz

ABSTRACT Actively replicating endogenous retroviruses entered the human genome millions of years ago and became a stable part of the inherited genetic material. They subsequently acquired multiple mutations, leading to the assumption that these viruses no longer replicate. However, certain human tumor cell lines have been shown to release endogenous retroviral particles. Here we show that RNA from human endogenous retrovirus K (HERV-K) (HML-2), a relatively recent entrant into the human genome, can be found in very high titers in the plasma of patients with lymphomas and breast cancer as measured by either reverse transcriptase PCR or nucleic acid sequence-based amplification. Further, these titers drop dramatically with cancer treatment. We also demonstrate the presence of reverse transcriptase and viral RNA in plasma fractions that contain both immature and correctly processed HERV-K (HML-2) Gag and envelope proteins. Finally, using immunoelectron microscopy, we show the presence of HERV-K (HML-2) virus-like particles in the plasma of lymphoma patients. Taken together, these findings demonstrate that elements of the endogenous retrovirus HERV-K (HML-2) can be found in the blood of modern-day humans with certain cancers.


PLOS Pathogens | 2008

Pneumococcal Pili Are Composed of Protofilaments Exposing Adhesive Clusters of Rrg A

Markus Hilleringmann; Fabiola Giusti; Barbara Baudner; Vega Masignani; Antonello Covacci; Rino Rappuoli; Michèle A. Barocchi; Ilaria Ferlenghi

Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface. The arrangement of gold particles displayed a uniform distribution of anti-RrgB antibodies along the whole pilus, forming a backbone structure. Antibodies against RrgA were found along the filament as particulate aggregates of 2–3 units, often co-localised with single RrgC subunits. Structural analysis using cryo electron microscopy and data obtained from freeze drying/metal shadowing technique showed that pili are oligomeric appendages formed by at least two protofilaments arranged in a coiled-coil, compact superstructure of various diameters. Using extracellular matrix proteins in an enzyme-linked immunosorbent assay, ancillary RrgA was identified as the major adhesin of the pilus. Combining the structural and functional data, a model emerges where the pilus RrgB backbone serves as a carrier for surface located adhesive clusters of RrgA that facilitates the interaction with the host.


PLOS ONE | 2010

Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus Pneumoniae Pilus.

Glen Spraggon; Eric Koesema; Maria Scarselli; Enrico Malito; Massimiliano Biagini; Nathalie Norais; Carla Emolo; Michèle A. Barocchi; Fabiola Giusti; Markus Hilleringmann; Rino Rappuoli; Scott A. Lesley; Antonello Covacci; Vega Masignani; Ilaria Ferlenghi

Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.


Developmental Biology | 2011

Ofd1 is required in limb bud patterning and endochondral bone development.

Sabrina Bimonte; Amalia De Angelis; Luca Quagliata; Fabiola Giusti; Roberta Tammaro; Romano Dallai; Maria Grazia Ascenzi; Graciana Diez-Roux; Brunella Franco

Oral-facial-digital type I (OFDI) syndrome is an X-linked male lethal developmental disorder. It is ascribed to ciliary dysfunction and characterized by malformation of the face, oral cavity, and digits. Conditional inactivation using different Cre lines allowed us to study the role of the Ofd1 transcript in limb development. Immunofluorescence and ultrastructural studies showed that Ofd1 is necessary for correct ciliogenesis in the limb bud but not for cilia outgrowth, in contrast to what was previously shown for the embryonic node. Mutants with mesenchymal Ofd1 inactivation display severe polydactyly with loss of antero-posterior (A/P) digit patterning and shortened long bones. Loss of digit identity was found to be associated with a progressive loss of Shh signaling and an impaired processing of Gli3, whereas defects in limb outgrowth were due to defective Ihh signaling and to mineralization defects during endochondral bone formation. Our data demonstrate that Ofd1 plays a role in regulating digit number and identity during limb and skeletal patterning increasing insight on the functional role of primary cilia during development.


Journal of extracellular vesicles | 2013

Recombinant outer membrane vesicles carrying Chlamydia muridarum HtrA induce antibodies that neutralize chlamydial infection in vitro

Erika Bartolini; Elvira Ianni; Elisabetta Frigimelica; Roberto Petracca; Giuliano Galli; Nathalie Norais; Donatello Laera; Fabiola Giusti; Andrea Pierleoni; Manuela Donati; Roberto Cevenini; Oretta Finco; Guido Grandi; Renata Grifantini

Background Outer membrane vesicles (OMVs) are spheroid particles released by all Gram-negative bacteria as a result of the budding out of the outer membrane. Since they carry many of the bacterial surface-associated proteins and feature a potent built-in adjuvanticity, OMVs are being utilized as vaccines, some of which commercially available. Recently, methods for manipulating the protein content of OMVs have been proposed, thus making OMVs a promising platform for recombinant, multivalent vaccines development. Methods Chlamydia muridarum DO serine protease HtrA, an antigen which stimulates strong humoral and cellular responses in mice and humans, was expressed in Escherichia coli fused to the OmpA leader sequence to deliver it to the OMV compartment. Purified OMVs carrying HtrA (CM rHtrA-OMV) were analyzed for their capacity to induce antibodies capable of neutralizing Chlamydia infection of LLC-MK2 cells in vitro. Results CM rHtrA-OMV immunization in mice induced antibodies that neutralize Chlamydial invasion as judged by an in vitro infectivity assay. This was remarkably different from what observed with an enzymatically functional recombinant HtrA expressed in, and purified from the E. coli cytoplasm (CM rHtrA). The difference in functionality between anti-CM rHtrA and anti-CM rHtrA-OMV antibodies was associated to a different pattern of protein epitopes recognition. The epitope recognition profile of anti-CM HtrA-OMV antibodies was similar to that induced in mice during Chlamydial infection. Conclusions When expressed in OMVs HtrA appears to assume a conformation similar to the native one and this results in the elicitation of functional immune responses. These data further support the potentiality of OMVs as vaccine platform.


Journal of Morphology | 2009

A novel membrane specialization in the sperm tail of bug insects (heteroptera)

David Mercati; Fabiola Giusti; Romano Dallai

The sperm tail of bug insects has 9 + 9 + 2 flagellar axonemes and two mitochondrial derivatives showing two to three crystalline inclusions in their matrix. During spermiogenesis, the axoneme is surrounded by a membrane cistern which, at sperm maturity, reduces to two short cisterns on the opposite sides of the axoneme adhering to the mitochondrial derivatives. Filamentous bridges connect the intertubular material of the axoneme to these cisterns. Such bridges, which represent a peculiar feature of bug insects, are resistant to detergent treatment, whereas part of the intertubular material and the inner content of microtubular doublets are affected by the treatment. After freeze‐fracture replicas, at the insertion of the bridges to the cisternal membrane, the P‐face of this membrane shows a characteristic ribbon consisting of four rows of 11 ± 1 nm staggered intramembrane particles, 13 ± 2 nm apart along each row. The bridges could be able to maintain the axoneme in the proper position during flagellar beating avoiding distortion affecting sperm motility. J. Morphol. 2009.


Tissue & Cell | 2010

The spermatogenesis and the sperm structure of Terebrantia (Thysanoptera, Insecta).

Eugenio Paccagnini; David Mercati; Fabiola Giusti; Barbara Conti; Romano Dallai

Spermatogenesis and the sperm structure of the terebrantian Aeolothrips intermedius Bagnall are described. Spermatogenesis consists of two mitotic divisions; the second is characterized by the loss of half of the spermatids, which have pyknotic nuclei. Early spermatids have two centrioles, but when spermiogenesis starts, a third centriole is produced. The three basal bodies give rise to three flagella; later these fuse into a single flagellum which contains three 9+0 axonemes. The basal bodies are surrounded by a large amount of centriole adjunct material. During spermiogenesis this material contributes to the shifting of the three axonemes towards the anterior sperm region parallel to the elongating nucleus, and it is transformed into a dense cylinder. In the mature spermatids the three axonemes amalgamate to create a bundle of 27 doublet microtubules. Near the end of spermiogenesis the dense cylinder of the centriole adjunct lies parallel to the nucleus and the axonemes. It ends where the mitochondrion appears at half-sperm length. We confirm that Terebrantia testes have a single sperm cyst; their sperm are characterized by a cylindrical nucleus, three axonemes fused into one, a small mitochondrion and a short cylindrical centriole adjunct which corresponds to the dense body described in a previous work. The acrosome is lacking. At the midpoint of the anterior half of the sperm the outline of the cross-section is bilobed, with the nucleus contained in a pocket evagination of the plasma membrane. These characters are discussed in light of a comparison between Tubulifera and Terebrantia.


Tissue & Cell | 2011

A Cardinium-like symbiont in the proturan Acerella muscorum (Hexapoda)

Romano Dallai; David Mercati; Fabiola Giusti; Marco Gottardo; Antonio Carapelli

Endosymbionts of the Cardinium-like genus are described in the testes and other tissues of the proturan Acerella muscorum (Ionescu). Few endosymbionts are present in the large apical cells of functional testes, but they become numerous at the end of the reproductive cycle. They are also found within sperm cells where induce their degeneration. The Gram-negative endosymbionts are characterized by the presence of microtubule-like structures (MLC) in their cytoplasm. It is suggested a possible role of the endosymbionts in the elimination of degenerating sperm cells when the testes activity is ended, thus somewhat playing a role in the timing of the reproductive cycle of the proturan species.


Journal of Morphology | 2009

The ultrastructure of malpighian tubules and the chemical composition of the cocoon of Aeolothrips intermedius Bagnall (Thysanoptera).

Barbara Conti; Francesco Berti; David Mercati; Fabiola Giusti; Romano Dallai

The secretory activity of the two branched malpighian tubules (MTs) of the second‐instar larva in Aeolothrips intermedius is described. MTs of adult thrips have the typical ultrastructure of excretory epithelium with apical microvilli containing long mitochondria and a rich system of basal membrane infoldings. In the second‐instar larva just before pupation, the ultrastructure of MT epithelial cells is dramatically different, and there are numerous huge Golgi systems in the cytoplasm. These cells are involved in an intense secretory activity to produce an electron‐dense product which is released into the MTs lumen. This secretion is extruded from the hindgut and used by the second‐instar larva to build an elaborate protective cocoon for pupation. Electron‐spray‐ionization mass spectrometry analysis of the cocoon revealed the presence of a β‐N‐acetyl‐glucosamine, the main component of chitin, which is also present in the cocoons of Neuroptera and some Coleoptera. J. Morphol., 2010.

Collaboration


Dive into the Fabiola Giusti's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge