Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ilaria Ferlenghi is active.

Publication


Featured researches published by Ilaria Ferlenghi.


Journal of Bacteriology | 2008

A Second Pilus Type in Streptococcus pneumoniae Is Prevalent in Emerging Serotypes and Mediates Adhesion to Host Cells

Fabio Bagnoli; Monica Moschioni; Claudio Donati; Valentina Dimitrovska; Ilaria Ferlenghi; Claudia Facciotti; Alessandro Muzzi; Fabiola Giusti; Carla Emolo; Antonella Sinisi; Markus Hilleringmann; Werner Pansegrau; Stefano Censini; Rino Rappuoli; Antonello Covacci; Vega Masignani; Michèle A. Barocchi

Analysis of publicly available genomes of Streptococcus pneumoniae has led to the identification of a new genomic element containing genes typical of gram-positive pilus islets (PIs). Here, we demonstrate that this genomic region, herein referred to as PI-2 (consisting of pitA, sipA, pitB, srtG1, and srtG2) codes for a second functional pilus in pneumococcus. Polymerization of the PI-2 pilus requires the backbone protein PitB as well as the sortase SrtG1 and the signal peptidase-like protein SipA. Presence of PI-2 correlates with the genotype as defined by multilocus sequence typing and clonal complex (CC). The PI-2-positive CCs are associated with serotypes 1, 2, 7F, 19A, and 19F, considered to be emerging serotypes in both industrialized and developing countries. Interestingly, strains belonging to CC271 (where sequence type 271 is the predicted founder of the CC) contain both PI-1 and PI-2, as revealed by genome analyses. In these strains both pili are surface exposed and independently assembled. Furthermore, in vitro experiments provide evidence that the pilus encoded by PI-2 of S. pneumoniae is involved in adherence. Thus, pneumococci encode at least two types of pili that play a role in the initial host cell contact to the respiratory tract and are potential antigens for inclusion in a new generation of pneumococcal vaccines.


Journal of Virology | 2008

Human Endogenous Retrovirus K (HML-2) Elements in the Plasma of People with Lymphoma and Breast Cancer

Rafael Contreras-Galindo; Mark H. Kaplan; Philippe Leissner; Thibault Verjat; Ilaria Ferlenghi; Fabio Bagnoli; Fabiola Giusti; Michael H. Dosik; Daniel F. Hayes; Scott D. Gitlin; David M. Markovitz

ABSTRACT Actively replicating endogenous retroviruses entered the human genome millions of years ago and became a stable part of the inherited genetic material. They subsequently acquired multiple mutations, leading to the assumption that these viruses no longer replicate. However, certain human tumor cell lines have been shown to release endogenous retroviral particles. Here we show that RNA from human endogenous retrovirus K (HERV-K) (HML-2), a relatively recent entrant into the human genome, can be found in very high titers in the plasma of patients with lymphomas and breast cancer as measured by either reverse transcriptase PCR or nucleic acid sequence-based amplification. Further, these titers drop dramatically with cancer treatment. We also demonstrate the presence of reverse transcriptase and viral RNA in plasma fractions that contain both immature and correctly processed HERV-K (HML-2) Gag and envelope proteins. Finally, using immunoelectron microscopy, we show the presence of HERV-K (HML-2) virus-like particles in the plasma of lymphoma patients. Taken together, these findings demonstrate that elements of the endogenous retrovirus HERV-K (HML-2) can be found in the blood of modern-day humans with certain cancers.


PLOS Pathogens | 2008

Pneumococcal Pili Are Composed of Protofilaments Exposing Adhesive Clusters of Rrg A

Markus Hilleringmann; Fabiola Giusti; Barbara Baudner; Vega Masignani; Antonello Covacci; Rino Rappuoli; Michèle A. Barocchi; Ilaria Ferlenghi

Pili have been identified on the cell surface of Streptococcus pneumoniae, a major cause of morbidity and mortality worldwide. In contrast to Gram-negative bacteria, little is known about the structure of native pili in Gram-positive species and their role in pathogenicity. Triple immunoelectron microscopy of the elongated structure showed that purified pili contained RrgB as the major compound, followed by clustered RrgA and individual RrgC molecules on the pilus surface. The arrangement of gold particles displayed a uniform distribution of anti-RrgB antibodies along the whole pilus, forming a backbone structure. Antibodies against RrgA were found along the filament as particulate aggregates of 2–3 units, often co-localised with single RrgC subunits. Structural analysis using cryo electron microscopy and data obtained from freeze drying/metal shadowing technique showed that pili are oligomeric appendages formed by at least two protofilaments arranged in a coiled-coil, compact superstructure of various diameters. Using extracellular matrix proteins in an enzyme-linked immunosorbent assay, ancillary RrgA was identified as the major adhesin of the pilus. Combining the structural and functional data, a model emerges where the pilus RrgB backbone serves as a carrier for surface located adhesive clusters of RrgA that facilitates the interaction with the host.


The EMBO Journal | 2009

Molecular architecture of Streptococcus pneumoniae TIGR4 pili

Markus Hilleringmann; Philippe Ringler; Shirley A. Müller; Gabriella De Angelis; Rino Rappuoli; Ilaria Ferlenghi; Andreas Engel

Although the pili of Gram‐positive bacteria are putative virulence factors, little is known about their structure. Here we describe the molecular architecture of pilus‐1 of Streptococcus pneumoniae, which is a major cause of morbidity and mortality worldwide. One major (RrgB) and two minor components (RrgA and RrgC) assemble into the pilus. Results from TEM and scanning transmission EM show that the native pili are approximately 6 nm wide, flexible filaments that can be over 1 μm long. They are formed by a single string of RrgB monomers and have a polarity defined by nose‐like protrusions. These protrusions correlate to the shape of monomeric RrgB–His, which like RrgA–His and RrgC–His has an elongated, multi‐domain structure. RrgA and RrgC are only present at the opposite ends of the pilus shaft, compatible with their putative roles as adhesin and anchor to the cell wall surface, respectively. Our structural analyses provide the first direct experimental evidence that the native S. pneumoniae pilus shaft is composed exclusively of covalently linked monomeric RrgB subunits oriented head‐to‐tail.


Journal of Virology | 2012

Characterization of Human Endogenous Retroviral Elements in the Blood of HIV-1-Infected Individuals

Rafael Contreras-Galindo; Mark Kaplan; Angie C. Contreras-Galindo; Marta J. Gonzalez-Hernandez; Ilaria Ferlenghi; Fabiola Giusti; Eric Lorenzo; Scott D. Gitlin; Michael H. Dosik; Yasuhiro Yamamura; David M. Markovitz

ABSTRACT We previously reported finding the RNA of a type K human endogenous retrovirus, HERV-K (HML-2), at high titers in the plasma of HIV-1-infected and cancer patients (R. Contreras-Galindo et al., J. Virol. 82:9329–9236, 2008.). The extent to which the HERV-K (HML-2) proviruses become activated and the nature of their activated viral RNAs remain important questions. Therefore, we amplified and sequenced the full-length RNA of the env gene of the type 1 and 2 HERV-K (HML-2) viruses collected from the plasma of seven HIV-1-infected patients over a period of 1 to 3 years and from five breast cancer patients in order to reconstruct the genetic evolution of these viruses. HERV-K (HML-2) RNA was found in plasma fractions of HIV-1 patients at a density of ∼1.16 g/ml that contained both immature and correctly processed HERV-K (HML-2) proteins and virus-like particles that were recognized by anti-HERV-K (HML-2) antibodies. RNA sequences from novel HERV-K (HML-2) proviruses were discovered, including K111, which is specifically active during HIV-1 infection. Viral RNA arose from complete proviruses and proviruses devoid of a 5′ long terminal repeat, suggesting that the expression of HERV-K (HML-2) RNA in these patients may involve sense and antisense transcription. In HIV-1-infected individuals, the HERV-K (HML-2) viral RNA showed evidence of frequent recombination, accumulation of synonymous rather than nonsynonymous mutations, and conserved N-glycosylation sites, suggesting that some of the HERV-K (HML-2) viral RNAs have undergone reverse transcription and are under purifying selection. In contrast, HERV-K (HML-2) RNA sequences found in the blood of breast cancer patients showed no evidence of recombination and exhibited only sporadic viral mutations. This study suggests that HERV-K (HML-2) is active in HIV-1-infected patients, and the resulting RNA message reveals previously undiscovered HERV-K (HML-2) genomic sequences.


PLOS ONE | 2012

High Yield Production Process for Shigella Outer Membrane Particles

Anna Maria Colucci; Luana Maggiore; Silvia Sanzone; Omar Rossi; Ilaria Ferlenghi; Isabella Pesce; Mariaelena Caboni; Nathalie Norais; Vito Di Cioccio; Allan Saul; Christiane Gerke

Gram-negative bacteria naturally shed particles that consist of outer membrane lipids, outer membrane proteins, and soluble periplasmic components. These particles have been proposed for use as vaccines but the yield has been problematic. We developed a high yielding production process of genetically derived outer membrane particles from the human pathogen Shigella sonnei. Yields of approximately 100 milligrams of membrane-associated proteins per liter of fermentation were obtained from cultures of S. sonnei ΔtolR ΔgalU at optical densities of 30–45 in a 5 L fermenter. Proteomic analysis of the purified particles showed the preparation to primarily contain predicted outer membrane and periplasmic proteins. These were highly immunogenic in mice. The production of these outer membrane particles from high density cultivation of bacteria supports the feasibility of scaling up this approach as an affordable manufacturing process. Furthermore, we demonstrate the feasibility of using this process with other genetic manipulations e.g. abolition of O antigen synthesis and modification of the lipopolysaccharide structure in order to modify the immunogenicity or reactogenicity of the particles. This work provides the basis for a large scale manufacturing process of Generalized Modules of Membrane Antigens (GMMA) for production of vaccines from Gram-negative bacteria.


PLOS ONE | 2010

Supramolecular Organization of the Repetitive Backbone Unit of the Streptococcus Pneumoniae Pilus.

Glen Spraggon; Eric Koesema; Maria Scarselli; Enrico Malito; Massimiliano Biagini; Nathalie Norais; Carla Emolo; Michèle A. Barocchi; Fabiola Giusti; Markus Hilleringmann; Rino Rappuoli; Scott A. Lesley; Antonello Covacci; Vega Masignani; Ilaria Ferlenghi

Streptococcus pneumoniae, like many other Gram-positive bacteria, assembles long filamentous pili on their surface through which they adhere to host cells. Pneumococcal pili are formed by a backbone, consisting of the repetition of the major component RrgB, and two accessory proteins (RrgA and RrgC). Here we reconstruct by transmission electron microscopy and single particle image reconstruction method the three dimensional arrangement of two neighbouring RrgB molecules, which represent the minimal repetitive structural domain of the native pilus. The crystal structure of the D2-D4 domains of RrgB was solved at 1.6 Å resolution. Rigid-body fitting of the X-ray coordinates into the electron density map enabled us to define the arrangement of the backbone subunits into the S. pneumoniae native pilus. The quantitative fitting provide evidence that the pneumococcal pilus consists uniquely of RrgB monomers assembled in a head-to-tail organization. The presence of short intra-subunit linker regions connecting neighbouring domains provides the molecular basis for the intrinsic pilus flexibility.


Mbio | 2012

FdeC, a Novel Broadly Conserved Escherichia coli Adhesin Eliciting Protection against Urinary Tract Infections

Barbara Nesta; Glen Spraggon; Christopher J. Alteri; Danilo Gomes Moriel; Roberto Rosini; Daniele Veggi; Sara N. Smith; Isabella Bertoldi; Ilaria Pastorello; Ilaria Ferlenghi; Maria Rita Fontana; Gad Frankel; Harry L. T. Mobley; Rino Rappuoli; Mariagrazia Pizza; Laura Serino; Marco Soriani

ABSTRACT The increasing antibiotic resistance of pathogenic Escherichia coli species and the absence of a pan-protective vaccine pose major health concerns. We recently identified, by subtractive reverse vaccinology, nine Escherichia coli antigens that protect mice from sepsis. In this study, we characterized one of them, ECOK1_0290, named FdeC (factor adherence E. coli) for its ability to mediate E. coli adhesion to mammalian cells and extracellular matrix. This adhesive propensity was consistent with the X-ray structure of one of the FdeC domains that shows a striking structural homology to Yersinia pseudotuberculosis invasin and enteropathogenic E. coli intimin. Confocal imaging analysis revealed that expression of FdeC on the bacterial surface is triggered by interaction of E. coli with host cells. This phenotype was also observed in bladder tissue sections derived from mice infected with an extraintestinal strain. Indeed, we observed that FdeC contributes to colonization of the bladder and kidney, with the wild-type strain outcompeting the fdeC mutant in cochallenge experiments. Finally, intranasal mucosal immunization with recombinant FdeC significantly reduced kidney colonization in mice challenged transurethrally with uropathogenic E. coli, supporting a role for FdeC in urinary tract infections. IMPORTANCE Pathogenic Escherichia coli strains are involved in a diverse spectrum of diseases, including intestinal and extraintestinal infections (urinary tract infections and sepsis). The absence of a broadly protective vaccine against all these E. coli strains is a major problem for modern society due to high costs to health care systems. Here, we describe the structural and functional properties of a recently reported protective antigen, named FdeC, and elucidated its putative role during extraintestinal pathogenic E. coli infection by using both in vitro and in vivo infection models. The conservation of FdeC among strains of different E. coli pathotypes highlights its potential as a component of a broadly protective vaccine against extraintestinal and intestinal E. coli infections. Pathogenic Escherichia coli strains are involved in a diverse spectrum of diseases, including intestinal and extraintestinal infections (urinary tract infections and sepsis). The absence of a broadly protective vaccine against all these E. coli strains is a major problem for modern society due to high costs to health care systems. Here, we describe the structural and functional properties of a recently reported protective antigen, named FdeC, and elucidated its putative role during extraintestinal pathogenic E. coli infection by using both in vitro and in vivo infection models. The conservation of FdeC among strains of different E. coli pathotypes highlights its potential as a component of a broadly protective vaccine against extraintestinal and intestinal E. coli infections.


Cellular Microbiology | 2009

HadA is an atypical new multifunctional trimeric coiled-coil adhesin of Haemophilus influenzae biogroup aegyptius, which promotes entry into host cells

Davide Serruto; Tiziana Spadafina; Maria Scarselli; Stefania Bambini; Maurizio Comanducci; Sonja Höhle; Mogens Kilian; Esteban Veiga; Pascale Cossart; Marco R. Oggioni; Silvana Savino; Ilaria Ferlenghi; Anna Rita Taddei; Rino Rappuoli; Mariagrazia Pizza; Vega Masignani; Beatrice Aricò

The Oca (Oligomeric coiled‐coil adhesin) family is a subgroup of the bacterial trimeric autotransporter adhesins, which includes structurally related proteins, such as YadA of Yersinia enterocolitica and NadA of Neisseria meningitidis. In this study, we searched in silico for novel members of this family in bacterial genomes and identified HadA (Haemophilus adhesin A), a trimeric autotransporter expressed only by Haemophilus influenzae biogroup aegyptius causing Brazilian purpuric fever (BPF), a fulminant septicemic disease of children. By comparative genomics and sequence analysis we predicted that the hadA gene is harboured on a mobile genetic element unique to BPF isolates. Biological analysis of HadA in the native background was limited because this organism is not amenable to genetic manipulation. Alternatively, we demonstrated that expression of HadA confers to a non‐invasive Escherichia coli strain the ability to adhere to human cells and to extracellular matrix proteins and to induce in vitro bacterial aggregation and microcolony formation. Intriguingly, HadA is predicted to lack the typical N‐terminal head domain of Oca proteins generally associated with cellular receptor binding. We propose here a structural model of the HadA coiled‐coil stalk and show that the N‐terminal region is still responsible of the binding activity and a KGD motif plays a role. Interestingly, HadA promotes bacterial entry into mammalian cells. Our results show a cytoskeleton re‐arrangement and an involvement of clathrin in the HadA‐mediated internalization. These data give new insights on the structure‐function relationship of oligomeric coiled‐coil adhesins and suggest a potential role of this protein in the pathogenesis of BPF.


Infection and Immunity | 2009

CT043, a protective antigen that induces a CD4+ Th1 response during Chlamydia trachomatis infection in mice and humans.

Eva Meoni; Elisa Faenzi; Elisabetta Frigimelica; Luisanna Zedda; David Skibinski; Serena Giovinazzi; Alessandra Bonci; Roberto Petracca; Erika Bartolini; Giuliano Galli; Mauro Agnusdei; Filomena Nardelli; Francesca Buricchi; Nathalie Norais; Ilaria Ferlenghi; Manuela Donati; Roberto Cevenini; Oretta Finco; Guido Grandi; Renata Grifantini

ABSTRACT Despite several decades of intensive studies, no vaccines against Chlamydia trachomatis, an intracellular pathogen causing serious ocular and urogenital diseases, are available yet. Infection-induced immunity in both animal models and humans strongly supports the notion that for a vaccine to be effective a strong CD4+ Th1 immune response should be induced. In the course of our vaccine screening program based on the selection of chlamydial proteins eliciting cell-mediated immunity, we have found that CT043, a protein annotated as hypothetical, induces CD4+ Th1 cells both in chlamydia-infected mice and in human patients with diagnosed C. trachomatis genital infection. DNA priming/protein boost immunization with CT043 results in a 2.6-log inclusion-forming unit reduction in the murine lung infection model. Sequence analysis of CT043 from C. trachomatis human isolates belonging to the most representative genital serovars revealed a high degree of conservation, suggesting that this antigen could provide cross-serotype protection. Therefore, CT043 is a promising vaccine candidate against C. trachomatis infection.

Collaboration


Dive into the Ilaria Ferlenghi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge