Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrice Piu is active.

Publication


Featured researches published by Fabrice Piu.


Journal of Pharmacology and Experimental Therapeutics | 2006

Pharmacological and Behavioral Profile of N-(4-Fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl) Carbamide (2R,3R)-Dihydroxybutanedioate (2:1) (ACP-103), a Novel 5-Hydroxytryptamine2A Receptor Inverse Agonist

Kimberly E. Vanover; David M. Weiner; Malath Makhay; Isaac Veinbergs; Luis R. Gardell; Jelveh Lameh; Andria L. Del Tredici; Fabrice Piu; Hans H. Schiffer; Thomas R. Ott; Ethan S. Burstein; Allan K. Uldam; Mikkel Boas Thygesen; Nathalie Schlienger; Carl Magnus Andersson; Thomas Son; Scott C. Harvey; Susan B. Powell; Mark A. Geyer; Bo-Ragner Tolf; Mark R. Brann; Robert E. Davis

The in vitro and in vivo pharmacological properties of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N′-(4-(2-methylpropyloxy)phenylmethyl)carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103) are presented. A potent 5-hydroxytryptamine (5-HT)2A receptor inverse agonist ACP-103 competitively antagonized the binding of [3H]ketanserin to heterologously expressed human 5-HT2A receptors with a mean pKi of 9.3 in membranes and 9.70 in whole cells. ACP-103 displayed potent inverse agonist activity in the cell-based functional assay receptor selection and amplification technology (R-SAT), with a mean pIC50 of 8.7. ACP-103 demonstrated lesser affinity (mean pKi of 8.80 in membranes and 8.00 in whole cells, as determined by radioligand binding) and potency as an inverse agonist (mean pIC50 7.1 in R-SAT) at human 5-HT2C receptors, and lacked affinity and functional activity at 5-HT2B receptors, dopamine D2 receptors, and other human monoaminergic receptors. Behaviorally, ACP-103 attenuated head-twitch behavior (3 mg/kg p.o.), and prepulse inhibition deficits (1-10 mg/kg s.c.) induced by the 5-HT2A receptor agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride in rats and reduced the hyperactivity induced in mice by the N-methyl-d-aspartate receptor noncompetitive antagonist 5H-dibenzo[a,d]cyclohepten-5,10-imine (dizocilpine maleate; MK-801) (0.1 and 0.3 mg/kg s.c.; 3 mg/kg p.o.), consistent with a 5-HT2A receptor mechanism of action in vivo and antipsychotic-like efficacy. ACP-103 demonstrated >42.6% oral bioavailability in rats. Thus, ACP-103 is a potent, efficacious, orally active 5-HT2A receptor inverse agonist with a behavioral pharmacological profile consistent with utility as an antipsychotic agent.


Molecular Pharmacology | 2007

Identification of the First Synthetic Steroidogenic Factor 1 Inverse Agonists: Pharmacological Modulation of Steroidogenic Enzymes

Andria L. Del Tredici; Carsten B. Andersen; Erika A. Currier; Steven R. Ohrmund; Luke C. Fairbain; Birgitte W. Lund; Norman Nash; Roger Olsson; Fabrice Piu

Steroidogenic factor SF-1, a constitutively active nuclear hormone receptor, is essential to the development of adrenal and gonadal glands and acts as a shaping factor of sexual determination and differentiation. Its effects are exerted primarily through the control of the synthesis of steroid hormones. The functional cell-based assay Receptor Selection and Amplification Technology (R-SAT) was used to identify potent and selective SF-1 inverse agonists through the screening of a chemical library of drug-like small-molecule entities. Among them, 4-(heptyloxy)phenol (AC-45594), a prototype inverse agonist lead, was used to show that SF-1 constitutive activity can be pharmacologically modulated by a synthetic ligand. In a physiological system of endocrine function, the expression of several reported SF-1 target genes, including SF-1 itself, was inhibited by treatment with AC-45594 and analogs. Thus, pharmacological modulation of SF-1 is critical to its function as an endocrine master regulator and has potentially important consequences to diseases in which SF-1 activity is critical.


Current Pharmaceutical Design | 2006

Integrative Functional Assays, Chemical Genomics and High Throughput Screening: Harnessing Signal Transduction Pathways to a Common HTS Readout

Ethan S. Burstein; Fabrice Piu; Jian-Nong Ma; Jacques Weissman; Erika A. Currier; Norman Nash; David M. Weiner; Tracy A. Spalding; Hans H. Schiffer; Andria L. Del Tredici; Mark R. Brann

Chemical genomics is a drug discovery strategy that relies heavily on high-throughput screening (HTS) and therefore benefits from functional assay platforms that allow HTS against all relevant genomic targets. Receptor Selection and Amplification Technology (R-SAT) is a cell-based, high-throughput functional assay where the receptor stimulus is translated into a measurable cellular response through an extensive signaling cascade occurring over several days. The large biological and chronological separation of stimulus from response provides numerous opportunities for enabling assays and increasing assay sensitivity. Here we review strategies for building homogeneous assay platforms across large gene families by redirecting and/or amplifying signal transduction pathways.


European Journal of Pharmacology | 2008

Broad modulation of neuropathic pain states by a selective estrogen receptor beta agonist

Fabrice Piu; Cindy Cheevers; Lene Hyldtoft; Luis R. Gardell; Andria L. Del Tredici; Carsten B. Andersen; Luke C. Fairbairn; Birgitte W. Lund; Magnus Gustafsson; Hans H. Schiffer; John E. Donello; Roger Olsson; Daniel W. Gil; Mark R. Brann

The effects of estrogens on pain perception remain controversial. In animal models, both beneficial and detrimental effects of non-selective estrogens have been reported. ERb-131 a non-steroidal estrogen receptor beta ligand was evaluated in several pain animal models involving nerve injury or sensitization. Using functional and binding assays, ERb-131 was characterized as a potent and selective estrogen receptor beta agonist. In vivo, ERb-131 was devoid of estrogen receptor alpha activity as assessed in a rat uterotrophic assay. ERb-131 alleviated tactile hyperalgesia induced by capsaicin, and reversed tactile allodynia caused by spinal nerve ligation and various chemical insults. Moreover, ERb-131 did not influence the pain threshold of normal healthy animals. Thus, estrogen receptor beta agonism is a critical effector in attenuating a broad range of anti-nociceptive states.


Journal of Medicinal Chemistry | 2009

Synthesis and Evaluation of Dibenzothiazepines: A Novel Class of Selective Cannabinoid-1 Receptor Inverse Agonists

Hanna Pettersson; Anne Bulow; Fredrik Ek; Jacob Jensen; Lars Korsgaard Ottesen; Alma Fejzic; Jian-Nong Ma; Andria L. Del Tredici; Erika A. Currier; Luis R. Gardell; Ali Tabatabaei; Darren Craig; Krista McFarland; Thomas R. Ott; Fabrice Piu; Ethan S. Burstein; Roger Olsson

A novel class of CB1 inverse agonists was discovered. To efficiently establish structure-activity relationships (SARs), new synthetic methodologies amenable for parallel synthesis were developed. The compounds were evaluated in a mammalian cell-based functional assay and in radioligand binding assays expressing recombinant human cannabinoid receptors (CB1 and CB2). In general, all of the compounds exhibited high binding selectivity at CB1 vs CB2 and the general SAR revealed a lead compound 11-(4-chlorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12e) which showed excellent in vivo activity in pharmacodynamic models related to CB1 receptor activity. The low solubility that hampered the development of 12e was solved leading to a potential preclinical candidate 11-(3-chloro-4-fluorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12h).


The Journal of Steroid Biochemistry and Molecular Biology | 2008

Pharmacological characterization of AC-262536, a novel selective androgen receptor modulator

Fabrice Piu; Luis R. Gardell; Thomas Son; Nathalie Schlienger; Birgitte W. Lund; Hans H. Schiffer; Kim Vanover; Robert E. Davis; Roger Olsson; Stefania Risso Bradley

Because of the limitations and liabilities of current testosterone therapies, non-steroidal tissue-selective androgen receptor modulators may provide a clinically meaningful advance in therapy. Using a functional cell-based assay AC-262536 was identified as a potent and selective AR ligand, with partial agonist activity relative to the natural androgen testosterone. A 2-week chronic study in castrated male rats indicated that AC-262536 significantly improves anabolic parameters in these animals, especially in stimulating the growth of the levator ani and in suppressing elevated LH levels. In sharp contrast to testosterone, AC-262536 has weak androgenic effects, as measured by prostate and seminal vesicle weights. Thus, AC-262536 represents a novel class of selective androgen receptor modulators (SARMs) with beneficial anabolic effects.


European Journal of Pharmacology | 2008

Differential modulation of inflammatory pain by a selective estrogen receptor beta agonist

Luis R. Gardell; Lene Hyldtoft; Andria L. Del Tredici; Carsten B. Andersen; Luke C. Fairbairn; Birgitte W. Lund; Magnus Gustafsson; Mark R. Brann; Roger Olsson; Fabrice Piu

To understand the contribution of the estrogen receptor beta, the potent and selective agonist ERb-131 was evaluated in animal models of inflammatory pain. In paradigms of acute and persistent inflammatory pain, ERb-131 did not alleviate the nociception induced by either carrageenan or formalin. However, in the chronic complete Freunds adjuvant model, ERb-131 resolved both inflammatory and hyperalgesic components. Thus, ERb-131 is sufficient to alleviate chronic but not acute inflammatory pain states.


Molecular Pharmacology | 2006

Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer

Hans H. Schiffer; Esther C. Reding; Stephen R. Fuhs; Qing Lu; Fabrice Piu; Steven Wong; Pey-Lih H. Littler; Dave M. Weiner; William Keefe; Phil K. Tan; Norman Nash; Anne Eeg Knapp; Roger Olsson; Mark R. Brann

We have developed a new assay for measuring epidermal growth factor receptor (EGFR) activation using the bioluminescence resonance energy transfer (BRET) technology, which directly measures the recruitment of signaling proteins to activated EGFR. Our results demonstrate that EGFR BRET assays precisely measure the pharmacology and signaling properties of EGFR expressed in human embryonic kidney 293T cells. EGFR BRET assays are highly sensitive to known EGFR ligands [pEC50 of epidermal growth factor (EGF) = 10.1 ± 0.09], consistent with previous pharmacological methods for measuring EGFR activation. We applied EGFR BRET assays to study the characteristics of somatic EGFR mutations that were recently identified in lung cancer. In agreement with recent reports, we detected constitutively active mutant EGFR isoforms, which predominantly signal through the phosphatidylinositol-3-kinase/Akt pathway. The EGFR inhibitors Iressa or Tarceva are severalfold more potent in inhibiting constitutive activity of mutant EGFR isoforms compared with wild-type EGFR. Notable, our results reveal that most of the mutant EGFR isoforms tested were significantly impaired in their response to EGF. The highest level of constitutive activity and nearly complete loss of epidermal growth factor responsiveness was detected in isoforms that carry the activating mutation L858R and the secondary resistance mutation T790M. In summary, our study reveals that somatic mutations in EGFR quantitatively differ in pharmacology and signaling properties, which suggest the possibility of differential clinical responsiveness to treatment with EGFR inhibitors. Furthermore, we demonstrate that the EGFR BRET assays are a useful tool to study the pharmacology of ligand-induced interaction between EGFR and signaling pathway-specifying adapter proteins.


Journal of Medicinal Chemistry | 2009

Synthesis, Structure−Activity Relationships, and Characterization of Novel Nonsteroidal and Selective Androgen Receptor Modulators

Nathalie Schlienger; Birgitte W. Lund; Jan Pawlas; Fabrizio Badalassi; Fabio Bertozzi; Rasmus Lewinsky; Alma Fejzic; Mikkel Boas Thygesen; Ali Tabatabaei; Stefania Risso Bradley; Luis R. Gardell; Fabrice Piu; Roger Olsson

Herein we describe the discovery of ACP-105 (1), a novel and potent nonsteroidal selective androgen receptor modulator (SARM) with partial agonist activity relative to the natural androgen testosterone. Compound 1 was developed from a series of compounds found in a HTS screen using the receptor selection and amplification technology (R-SAT). In vivo, 1 improved anabolic parameters in a 2-week chronic study in castrated male rats. In addition to compound 1, a number of potent antiandrogens were discovered from the same series of compounds whereof one compound, 13, had antagonist activity at the AR T877A mutant involved in prostate cancer.


Molecular Pharmacology | 2007

Monitoring Interactions between Receptor Tyrosine Kinases and Their Downstream Effector Proteins in Living Cells Using Bioluminescence Resonance Energy Transfer

Philip K. Tan; Jean Wang; Pey-Lih H. Littler; Kenneth K. Wong; Timothy Sweetnam; William Keefe; Norman Nash; Esther C. Reding; Fabrice Piu; Mark R. Brann; Hans H. Schiffer

A limited number of whole-cell assays allow monitoring of receptor tyrosine kinase (RTK) activity in a signaling pathway-specific manner. We present the general use of the bioluminescence resonance energy transfer (BRET) technology to quantitatively study the pharmacology and signaling properties of the receptor tyrosine kinase (RTK) superfamily. RTK BRET-2 assays monitor, in living cells, the specific interaction between RTKs and their effector proteins, which control the activation of specific downstream signaling pathways. A total of 22 BRET assays have been established for nine RTKs derived from four subfamilies [erythroblastic leukemia viral (v-erb-b) oncogene homolog (ErbB), platelet-derived growth factor (PDGF), neurotrophic tyrosine kinase receptor (TRK), vascular endothelial growth factor (VEGF)] monitoring the interactions with five effectors (Grb2, p85, Stat5a, Shc46, PLCγ1). These interactions are dependent on the RTK kinase activity and autophosphorylation of specific tyrosine residues in the carboxyl terminus. RTK BRET assays are highly sensitive for quantifying ligand-independent (constitutive), agonist-induced, or antagonist-inhibited RTK activity levels. We studied the signaling properties of the PDGF receptor, α polypeptide (PDGFRA) isoforms (V561D; D842V and Δ842–845) carrying activating mutations identified in gastrointestinal stromal tumors (GIST). All three PDGFRA isoforms are fully constitutively activated, insensitive to the growth factor PDGF-BB, but show differential sensitivity of their constitutive activity to be inhibited by the inhibitor imatinib (Gleevec). Epidermal growth factor receptor (EGFR) BRET structure-function studies identify the tyrosine residues 1068, 1114, and 1148 as the main residues mediating the interaction of EGFR with the adapter protein Grb2. The BRET technology provides an assay platform to study signaling pathway-specific RTK structure-function and will facilitate drug discovery efforts for the identification of novel RTK modulators.

Collaboration


Dive into the Fabrice Piu's collaboration.

Top Co-Authors

Avatar

Roger Olsson

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan S. Burstein

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika A. Currier

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Birgitte W. Lund

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Hans H. Schiffer

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman Nash

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Jian-Nong Ma

ACADIA Pharmaceuticals Inc.

View shared research outputs
Researchain Logo
Decentralizing Knowledge