Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norman Nash is active.

Publication


Featured researches published by Norman Nash.


Psychopharmacology | 2004

The role of M1 muscarinic receptor agonism of N-desmethylclozapine in the unique clinical effects of clozapine

David M. Weiner; Herbert Y. Meltzer; Isaac Veinbergs; E. M. Donohue; Tracy A. Spalding; T. T. Smith; N. Mohell; S. C. Harvey; Jelveh Lameh; Norman Nash; Kimberly E. Vanover; Roger Olsson; Karuna Jayathilake; Myung A. Lee; A. I. Levey; Uli Hacksell; Ethan S. Burstein; Robert E. Davis; Mark R. Brann

RationaleClozapine is a unique antipsychotic, with efficacy against positive symptoms in treatment-resistant schizophrenic patients, and the ability to improve cognition and treat the negative symptoms characteristic of this disease. Despite its unique clinical actions, no specific molecular mechanism responsible for these actions has yet been described.Objectives and methodsTo comprehensively profile a large library of neuropsychiatric drugs, including most antipsychotics, at human monoamine receptors using R-SAT, an in vitro functional assay.ResultsProfiling revealed that N-desmethylclozapine (NDMC), the principal metabolite of clozapine, but not clozapine itself, is a potent and efficacious muscarinic receptor agonist, a molecular property not shared by any other antipsychotic. To further explore the role of NDMC muscarinic receptor agonist properties in mediating the physiological actions of clozapine, systemically administered NDMC was found to stimulate the phosphorylation of mitogen-activated protein kinase (MAP kinase) in mouse CA1 hippocampal neurons, an effect that was blocked by scopolamine, confirming central M1 muscarinic receptor agonist activity in vivo. Lastly, an analysis of clozapine and NDMC serum levels in schizophrenic patients indicated that high NDMC/clozapine ratios better predicted improvement in cognitive functioning and quality of life than the levels of either compound alone.ConclusionsThe muscarinic receptor agonist activities of NDMC are unique among antipsychotics, and provide a possible molecular basis for the superior clinical effects of clozapine pharmacotherapy.


Neuropharmacology | 2002

Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H3 receptor

P Wellendorph; M.W Goodman; Ethan S. Burstein; Norman Nash; Mark R. Brann; David M. Weiner

The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinct receptor isoforms, of which isoforms 1, 2, and 4, encode functional proteins. Detailed pharmacology on isoforms 1 (unspliced receptor), and 2 (which has an 80 amino acid deletion within the third intracellular loop of the protein) revealed that both isoforms displayed robust responses to a series of known H(3) agonists, while all agonists tested displayed increased potency at isoform 2 relative to isoform 1. Histamine, N(alpha)-methylhistamine, and R(-) and S(+)-alpha-methylhistamine are 16-23-fold more potent, while immepip and imetit are three to fivefold more potent. Antagonist experiments revealed a rank order of potency at both isoforms of clobenpropit>iodophenpropit>thioperamide, and these drugs are fivefold less potent at isoform 2 than isoform 1. To further explore the pharmacology of H(3) receptor function, we screened 150 clinically relevant neuropsychiatric drugs for H(3) receptor activity, and identified a small number of antipsychotics that possess significant antagonist activity.


Journal of the Neurological Sciences | 2002

Very early activation of m-calpain in peripheral nerve during Wallerian degeneration

Jonathan D. Glass; Deborah G. Culver; Allan I. Levey; Norman Nash

Peripheral nerve injury results in a series of events culminating in degradation of the axonal cytoskeleton (Wallerian degeneration). In the time period between axotomy and cytoskeletal degradation (24-48 h in rodents), there is calcium entry and activation of calpains within the axon. The precise timing of these events during this period is unknown. In the present study, antibodies were generated to three distinct peptide epitopes of m-calpain, and a fusion protein antibody was generated to the intrinsic calpain inhibitor calpastatin. These antibodies were used to measure changes in these proteins in mouse sciatic nerves during Wallerian degeneration. In sciatic nerve homogenates and cultured dorsal root ganglion (DRG) neurites, m-calpain protein was significantly reduced in transected nerves very early after nerve injury, long before axonal degeneration occurred. Levels of m-calpain protein remained low as compared to control nerves for the remainder of the 72-h time course. No changes in calpastatin protein were evident. Systemic treatment of animals with the protease inhibitor leupeptin partially prevented the rapid loss of calpain protein. Removal of calcium in DRG cultures had the same effect. These data indicate that m-calpain protein is lost very early after axonal injury, and likely reflect activation and degradation of this protein long before the cytoskeleton is degraded. Calpain activation may be an early event in a proteolytic cascade that is initiated by axonal injury and culminates with axonal degeneration.


Journal of Medicinal Chemistry | 2002

Discovery of the first nonpeptide agonist of the GPR14/urotensin-II receptor: 3-(4-chlorophenyl)-3-(2- (dimethylamino)ethyl)isochroman-1-one (AC-7954).

Glenn Croston; Roger Olsson; Erika A. Currier; Ethan S. Burstein; David M. Weiner; Norman Nash; Daniel Severance; Stig Allenmark; Linda Thunberg; Jian-Nong Ma; Nina Mohell; Brian F. O'Dowd; Mark R. Brann; Uli Hacksell

A functional cell-based screen identified 3-(4-chlorophenyl)-3-(2-(dimethylamino)ethyl)isochroman-1-one hydrochloride (AC-7954, 1) as a nonpeptidic agonist of the urotensin-II receptor. Racemic 1 had an EC50 of 300 nM at the human UII receptor and was highly selective. Testing of the enantiopure (+)- and (-)- 1 revealed that the UII receptor activity of racemic 1 resides primarily in (+)-1. Being a selective nonpeptidic druglike UII receptor agonist, (+)-1 will be useful as a pharmacological research tool and a potential drug lead.


British Journal of Pharmacology | 2006

Characterization of the Mas-related gene family : structural and functional conservation of human and rhesus MrgX receptors

Ethan S. Burstein; Thomas R. Ott; Michele Feddock; Jian-Nong Ma; Steve Fuhs; Steven Wong; Hans H. Schiffer; Mark R. Brann; Norman Nash

Recently, a large family of G‐protein‐coupled receptors called Mas‐related genes (Mrgs), which is selectively expressed in small‐diameter sensory neurons of dorsal root ganglia, was described. A subgroup of human Mrg receptors (MrgX1–X4) is not found in rodents and this has hampered efforts to define the physiological roles of these receptors. MrgX receptors were cloned from rhesus monkey and functionally characterized alongside their human orthologs. Most of the human and rhesus MrgX receptors displayed high constitutive activity in a cellular proliferation assay. Proliferative responses mediated by human or rhesus MrgX1, or rhesus MrgX2 were partially blocked by pertussis toxin (PTX). Proliferative responses mediated by rhesus MrgX3 and both human and rhesus MrgX4 were PTX insensitive. These results indicate that human and rhesus MrgX1 and MrgX2 receptors activate both Gq‐ and Gi‐regulated pathways, while MrgX3 and MrgX4 receptors primarily stimulate Gq‐regulated pathways. Peptides known to activate human MrgX1 and MrgX2 receptors activated the corresponding rhesus receptors in cellular proliferation assays, Ca2+‐mobilization assays, and GTP‐γS‐binding assays. Cortistatin‐14 was selective for human and rhesus MrgX2 receptors over human and rhesus MrgX1 receptors. BAM22 and related peptides strongly activated human MrgX1 receptors, but weakly activated rhesus MrgX1, human MrgX2, and rhesus MrgX2 receptors. These data suggest that the rhesus monkey may be a suitable animal model for exploring the physiological roles of the MrgX receptors.


Journal of Pharmacology and Experimental Therapeutics | 2008

Identification and Characterization of Novel Small-Molecule Protease-Activated Receptor 2 Agonists

Luis R. Gardell; Jian-Nong Ma; Jimmi Gerner Seitzberg; Anne Eeg Knapp; Hans H. Schiffer; Ali Tabatabaei; Christopher N. Davis; Michelle Owens; Bryan Clemons; Kenneth K. Wong; Birgitte W. Lund; Norman Nash; Yan Gao; Jelveh Lameh; Kara R. Schmelzer; Roger Olsson; Ethan S. Burstein

We report the first small-molecule protease-activated receptor (PAR) 2 agonists, AC-55541 [N-[[1-(3-bromo-phenyl)-eth-(E)-ylidene-hydrazinocarbonyl]-(4-oxo-3,4-dihydro-phthalazin-1-yl)-methyl]-benzamide] and AC-264613 [2-oxo-4-phenylpyrrolidine-3-carboxylic acid [1-(3-bromo-phenyl)-(E/Z)-ethylidene]-hydrazide], each representing a distinct chemical series. AC-55541 and AC-264613 each activated PAR2 signaling in cellular proliferation assays, phosphatidylinositol hydrolysis assays, and Ca2+ mobilization assays, with potencies ranging from 200 to 1000 nM for AC-55541 and 30 to 100 nM for AC-264613. In comparison, the PAR2-activating peptide 2-furoyl-LIGRLO-NH2 had similar potency, whereas SLIGRL-NH2 was 30 to 300 times less potent. Neither AC-55541 nor AC-264613 had activity at any of the other PAR receptor subtypes, nor did they have any significant affinity for over 30 other molecular targets involved in nociception. Visualization of EYFP-tagged PAR2 receptors showed that each compound stimulated internalization of PAR2 receptors. AC-55541 and AC-264613 were well absorbed when administered intraperitoneally to rats, each reaching micromolar peak plasma concentrations. AC-55541 and AC-264613 were each stable to metabolism by liver microsomes and maintained sustained exposure in rats, with elimination half-lives of 6.1 and 2.5 h, respectively. Intrapaw administration of AC-55541 or AC-264613 elicited robust and persistent thermal hyperalgesia and edema. Coadministration of either a tachykinin 1 (neurokinin 1) receptor antagonist or a transient receptor potential vanilloid (TRPV) 1 antagonist completely blocked these effects. Systemic administration of either AC-55541 or AC-264613 produced a similar degree of hyperalgesia as was observed when the compounds were administered locally. These compounds represent novel small-molecule PAR2 agonists that will be useful in probing the physiological functions of PAR2 receptors.


Molecular Pharmacology | 2007

Identification of the First Synthetic Steroidogenic Factor 1 Inverse Agonists: Pharmacological Modulation of Steroidogenic Enzymes

Andria L. Del Tredici; Carsten B. Andersen; Erika A. Currier; Steven R. Ohrmund; Luke C. Fairbain; Birgitte W. Lund; Norman Nash; Roger Olsson; Fabrice Piu

Steroidogenic factor SF-1, a constitutively active nuclear hormone receptor, is essential to the development of adrenal and gonadal glands and acts as a shaping factor of sexual determination and differentiation. Its effects are exerted primarily through the control of the synthesis of steroid hormones. The functional cell-based assay Receptor Selection and Amplification Technology (R-SAT) was used to identify potent and selective SF-1 inverse agonists through the screening of a chemical library of drug-like small-molecule entities. Among them, 4-(heptyloxy)phenol (AC-45594), a prototype inverse agonist lead, was used to show that SF-1 constitutive activity can be pharmacologically modulated by a synthetic ligand. In a physiological system of endocrine function, the expression of several reported SF-1 target genes, including SF-1 itself, was inhibited by treatment with AC-45594 and analogs. Thus, pharmacological modulation of SF-1 is critical to its function as an endocrine master regulator and has potentially important consequences to diseases in which SF-1 activity is critical.


Current Pharmaceutical Design | 2006

Integrative Functional Assays, Chemical Genomics and High Throughput Screening: Harnessing Signal Transduction Pathways to a Common HTS Readout

Ethan S. Burstein; Fabrice Piu; Jian-Nong Ma; Jacques Weissman; Erika A. Currier; Norman Nash; David M. Weiner; Tracy A. Spalding; Hans H. Schiffer; Andria L. Del Tredici; Mark R. Brann

Chemical genomics is a drug discovery strategy that relies heavily on high-throughput screening (HTS) and therefore benefits from functional assay platforms that allow HTS against all relevant genomic targets. Receptor Selection and Amplification Technology (R-SAT) is a cell-based, high-throughput functional assay where the receptor stimulus is translated into a measurable cellular response through an extensive signaling cascade occurring over several days. The large biological and chronological separation of stimulus from response provides numerous opportunities for enabling assays and increasing assay sensitivity. Here we review strategies for building homogeneous assay platforms across large gene families by redirecting and/or amplifying signal transduction pathways.


Journal of Medicinal Chemistry | 2009

Discovery of selective nonpeptidergic neuropeptide FF2 receptor agonists.

Gilles Gaubert; Fabio Bertozzi; Nicholas Michael Kelly; Jan Pawlas; Audra L. Scully; Norman Nash; Luis R. Gardell; Jelveh Lameh; Roger Olsson

We report the discovery and initial characterization of a novel class of selective NPFF2 agonists. HTS screening using R-SAT, a whole cell based functional assay, identified a class of aryliminoguanidines as NPFF1 and NPFF2 ligands. Subsequent optimization led to molecules exhibiting selective NPFF2 agonistic activity. Systemic administration showed that selective NPFF2 agonists (1 and 3) are active in various pain models in vivo, whereas administration of a nonselective NPFF1 and NPFF2 agonist (9) increases sensitivity to noxious and non-noxious stimuli.


Molecular Pharmacology | 2006

Pharmacology and signaling properties of epidermal growth factor receptor isoforms studied by bioluminescence resonance energy transfer

Hans H. Schiffer; Esther C. Reding; Stephen R. Fuhs; Qing Lu; Fabrice Piu; Steven Wong; Pey-Lih H. Littler; Dave M. Weiner; William Keefe; Phil K. Tan; Norman Nash; Anne Eeg Knapp; Roger Olsson; Mark R. Brann

We have developed a new assay for measuring epidermal growth factor receptor (EGFR) activation using the bioluminescence resonance energy transfer (BRET) technology, which directly measures the recruitment of signaling proteins to activated EGFR. Our results demonstrate that EGFR BRET assays precisely measure the pharmacology and signaling properties of EGFR expressed in human embryonic kidney 293T cells. EGFR BRET assays are highly sensitive to known EGFR ligands [pEC50 of epidermal growth factor (EGF) = 10.1 ± 0.09], consistent with previous pharmacological methods for measuring EGFR activation. We applied EGFR BRET assays to study the characteristics of somatic EGFR mutations that were recently identified in lung cancer. In agreement with recent reports, we detected constitutively active mutant EGFR isoforms, which predominantly signal through the phosphatidylinositol-3-kinase/Akt pathway. The EGFR inhibitors Iressa or Tarceva are severalfold more potent in inhibiting constitutive activity of mutant EGFR isoforms compared with wild-type EGFR. Notable, our results reveal that most of the mutant EGFR isoforms tested were significantly impaired in their response to EGF. The highest level of constitutive activity and nearly complete loss of epidermal growth factor responsiveness was detected in isoforms that carry the activating mutation L858R and the secondary resistance mutation T790M. In summary, our study reveals that somatic mutations in EGFR quantitatively differ in pharmacology and signaling properties, which suggest the possibility of differential clinical responsiveness to treatment with EGFR inhibitors. Furthermore, we demonstrate that the EGFR BRET assays are a useful tool to study the pharmacology of ligand-induced interaction between EGFR and signaling pathway-specifying adapter proteins.

Collaboration


Dive into the Norman Nash's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ethan S. Burstein

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erika A. Currier

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Jian-Nong Ma

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Roger Olsson

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Allan K. Uldam

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Fabrice Piu

ACADIA Pharmaceuticals Inc.

View shared research outputs
Top Co-Authors

Avatar

Hans H. Schiffer

ACADIA Pharmaceuticals Inc.

View shared research outputs
Researchain Logo
Decentralizing Knowledge