Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrizia Cesca is active.

Publication


Featured researches published by Fabrizia Cesca.


Progress in Neurobiology | 2010

The synapsins: Key actors of synapse function and plasticity

Fabrizia Cesca; Pietro Baldelli; Flavia Valtorta; Fabio Benfenati

The synapsins are a family of neuronal phosphoproteins evolutionarily conserved in invertebrate and vertebrate organisms. Their best-characterised function is to modulate neurotransmitter release at the pre-synaptic terminal, by reversibly tethering synaptic vesicles (SVs) to the actin cytoskeleton. However, many recent data have suggested novel functions for synapsins in other aspects of the pre-synaptic physiology, such as SV docking, fusion and recycling. Synapsin activity is tightly regulated by several protein kinases and phosphatases, which modulate the association of synapsins to SVs as well as their interaction with actin filaments and other synaptic proteins. In this context, synapsins act as a link between extracellular stimuli and the intracellular signalling events activated upon neuronal stimulation. Genetic manipulation of synapsins in various in vivo models has revealed that, although not essential for the basic development and functioning of neuronal networks, these proteins are extremely important in the fine-tuning of neuronal plasticity, as shown by the epileptic phenotype and behavioural abnormalities characterising mouse lines lacking one or more synapsin isoforms. In this review, we summarise the current knowledge about how the various members of the synapsin family are involved in the modulation of the pre-synaptic physiology. We give a comprehensive description of the molecular basis of synapsin function, as well as an overview of the more recent evidence linking mutations in the synapsin proteins to the onset of severe central nervous system diseases such as epilepsy and schizophrenia.


The Journal of Neuroscience | 2011

Synapsin I Is an Oligomannose-Carrying Glycoprotein, Acts As an Oligomannose-Binding Lectin, and Promotes Neurite Outgrowth and Neuronal Survival When Released via Glia-Derived Exosomes

Shiwei Wang; Fabrizia Cesca; Gabriele Loers; Michaela Schweizer; Friedrich Buck; Fabio Benfenati; Melitta Schachner; Ralf Kleene

Oligomannosidic glycans play important roles in nervous system development and function. By performing a phage display screening with oligomannose-specific antibodies, we identified an oligomannose-mimicking peptide that was functionally active in modulating neurite outgrowth and neuron–astrocyte adhesion. Using the oligomannose-mimicking peptide in crosslinking experiments, synapsin I was identified as a novel oligomannose-binding protein in mouse brain. Further analyses not only verified that synapsin I is an oligomannose-binding lectin, but also indicated that it is a glycoprotein carrying oligomannose and Lewisx. We also found that synapsin I is expressed in glia-enriched cultures and is released from glial cells via exosomes. Incubation of glial-derived exosomes in the presence of high KCl concentrations or subjecting glial cell cultures to either oxygen/glucose deprivation or hydrogen peroxide resulted in release of synapsin I from exosomes. Application of synapsin I promoted neurite outgrowth from hippocampal neurons and increased survival of cortical neurons upon hydrogen peroxide treatment or oxygen/glucose deprivation. Coculture experiments using wild-type hippocampal neurons and wild-type or synapsin-deficient glial cells showed enhanced neurite outgrowth when synapsin was expressed by glial cells. Synapsin-induced neurite outgrowth was dependent on oligomannose on synapsin I and the neural cell adhesion molecule NCAM at the neuronal cell surface. The data indicate that, under conditions of high neuronal activity and/or oxidative stress, synapsin can be released from glial-derived exosomes and promotes neurite outgrowth and neuronal survival by modulating the interactions between glia and neurons.


Small | 2013

Nanostructured superhydrophobic substrates trigger the development of 3D neuronal networks

Tania Limongi; Fabrizia Cesca; Francesco Gentile; Roberto Marotta; Roberta Ruffilli; Andrea Barberis; Marco Dal Maschio; Enrica Maria Petrini; S. Santoriello; Fabio Benfenati; Enzo Di Fabrizio

The generation of 3D networks of primary neurons is a big challenge in neuroscience. Here, a novel method is presented for a 3D neuronal culture on superhydrophobic (SH) substrates. How nano-patterned SH devices stimulate neurons to build 3D networks is investigated. Scanning electron microscopy and confocal imaging show that soon after plating neurites adhere to the nanopatterned pillar sidewalls and they are subsequently pulled between pillars in a suspended position. These neurons display an enhanced survival rate compared to standard cultures and develop mature networks with physiological excitability. These findings underline the importance of using nanostructured SH surfaces for directing 3D neuronal growth, as well as for the design of biomaterials for neuronal regeneration.


Nature Communications | 2013

Synapsin II desynchronizes neurotransmitter release at inhibitory synapses by interacting with presynaptic calcium channels

Lucian Medrihan; Fabrizia Cesca; Andrea Raimondi; Gabriele Lignani; Pietro Baldelli; Fabio Benfenati

In the central nervous system, most synapses show a fast mode of neurotransmitter release known as synchronous release followed by a phase of asynchronous release, which extends over tens of milliseconds to seconds. Synapsin II (SYN2) is a member of the multigene synapsin family (SYN1/2/3) of synaptic vesicle phosphoproteins that modulate synaptic transmission and plasticity, and are mutated in epileptic patients. Here we report that inhibitory synapses of the dentate gyrus of Syn II knockout mice display an upregulation of synchronous neurotransmitter release and a concomitant loss of delayed asynchronous release. Syn II promotes γ-aminobutyric acid asynchronous release in a Ca2+-dependent manner by a functional interaction with presynaptic Ca2+ channels, revealing a new role in synaptic transmission for synapsins.


Neuroscience | 2010

Cortico-hippocampal hyperexcitability in synapsin I/II/III knockout mice: age-dependency and response to the antiepileptic drug levetiracetam.

D. Boido; Pasqualina Farisello; Fabrizia Cesca; E. Ferrea; Flavia Valtorta; Fabio Benfenati; Pietro Baldelli

Synapsins (SynI, SynII, SynIII) are a multigene family of synaptic vesicle (SV) phosphoproteins implicated in the regulation of synaptic transmission and plasticity. Synapsin I, II, I/II and I/II/III knockout mice are epileptic and SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans. We analyzed cortico-hippocampal epileptiform activity induced by 4-aminopyridine (4AP) in acute slices from presymptomatic (3-weeks-old) and symptomatic (1-year-old) Syn I/II/III triple knockout (TKO) mice and aged-matched triple wild type (TWT) controls and assessed the effect of the SV-targeted antiepileptic drug (AED) levetiracetam (LEV) in reverting the epileptic phenotype. Both fast and slow interictal (I-IC) and ictal (IC) events were observed in both genotypes. The incidence of fast I-IC events was higher in presymptomatic TKO slices, while frequency and latency of I-IC events were similar in both genotypes. The major age and genotype effects were observed in IC activity, that was much more pronounced in 3-weeks-old TKO and persisted with age, while it disappeared from 1-year-old TWT slices. LEV virtually suppressed fast I-IC and IC discharges from 3-weeks-old TWT slices, while it only increased the latency of fast I-IC and IC activity in TKO slices. Analysis of I-IC events in patch-clamped CA1 pyramidal neurons revealed that LEV increased the inhibitory/excitatory ratio of I-IC activity in both genotypes. The lower LEV potency in TKO slices of both ages was associated with a decreased expression of SV2A, a SV protein acting as LEV receptor, in cortex and hippocampus. The results demonstrate that deletion of Syn genes is associated with a higher propensity to 4AP-induced epileptic paroxysms that precedes the onset of epilepsy and consolidates with age. LEV ameliorates such hyper excitability by enhancing the inhibition/excitation ratio, although the effect is hindered in TKO slices which exhibit a concomitant decrease in the levels of the LEV receptor SV2A.


Cerebral Cortex | 2013

Synaptic and Extrasynaptic Origin of the Excitation/Inhibition Imbalance in the Hippocampus of Synapsin I/II/III Knockout Mice

Pasqualina Farisello; Davide Boido; Thierry Nieus; Lucian Medrihan; Fabrizia Cesca; Flavia Valtorta; Pietro Baldelli; Fabio Benfenati

Synapsins (Syn I, Syn II, and Syn III) are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. SYN1/2 genes have been identified as major epilepsy susceptibility genes in humans and synapsin I/II/III triple knockout (TKO) mice are epileptic. However, excitatory and inhibitory synaptic transmission and short-term plasticity have never been analyzed in intact neuronal circuits of TKO mice. To clarify the generation and expression of the epileptic phenotype, we performed patch-clamp recordings in the CA1 region of acute hippocampal slices from 1-month-old presymptomatic and 6-month-old epileptic TKO mice and age-matched controls. We found a strong imbalance between basal glutamatergic and γ-aminobutyric acid (GABA)ergic transmission with increased evoked excitatory postsynaptic current and impaired evoked inhibitory postsynaptic current amplitude. This imbalance was accompanied by a parallel derangement of short-term plasticity paradigms, with enhanced facilitation of glutamatergic transmission in the presymptomatic phase and milder depression of inhibitory synapses in the symptomatic phase. Interestingly, a lower tonic GABA(A) current due to the impaired GABA release is responsible for the more depolarized resting potential found in TKO CA1 neurons, which makes them more susceptible to fire. All these changes preceded the appearance of epilepsy, indicating that the distinct changes in excitatory and inhibitory transmission due to the absence of Syns initiate the epileptogenic process.


Journal of Cell Science | 2012

Kidins220/ARMS as a functional mediator of multiple receptor signalling pathways

Veronika E. Neubrand; Fabrizia Cesca; Fabio Benfenati; Giampietro Schiavo

An increasing body of evidence suggests that several membrane receptors – in addition to activating distinct signalling cascades – also engage in substantial crosstalk with each other, thereby adjusting their signalling outcome as a function of specific input information. However, little is known about the molecular mechanisms that control their coordination and integration of downstream signalling. A protein that is likely to have a role in this process is kinase-D-interacting substrate of 220 kDa [Kidins220, also known as ankyrin repeat-rich membrane spanning (ARMS), hereafter referred to as Kidins220/ARMS]. Kidins220/ARMS is a conserved membrane protein that is preferentially expressed in the nervous system and interacts with the microtubule and actin cytoskeleton. It interacts with neurotrophin, ephrin, vascular endothelial growth factor (VEGF) and glutamate receptors, and is a common downstream target of several trophic stimuli. Kidins220/ARMS is required for neuronal differentiation and survival, and its expression levels modulate synaptic plasticity. Kidins220/ARMS knockout mice show developmental defects mainly in the nervous and cardiovascular systems, suggesting a crucial role for this protein in modulating the cross talk between different signalling pathways. In this Commentary, we summarise existing knowledge regarding the physiological functions of Kidins220/ARMS, and highlight some interesting directions for future studies on the role of this protein in health and disease.


Cell Death & Differentiation | 2012

Kidins220/ARMS mediates the integration of the neurotrophin and VEGF pathways in the vascular and nervous systems

Fabrizia Cesca; A Yabe; Bradley Spencer-Dene; Joachim Scholz-Starke; Lucian Medrihan; C H Maden; Holger Gerhardt; I R Orriss; Pietro Baldelli; M Al-Qatari; M Koltzenburg; Ralf H. Adams; Fabio Benfenati; Giampietro Schiavo

Signaling downstream of receptor tyrosine kinases controls cell differentiation and survival. How signals from different receptors are integrated is, however, still poorly understood. In this work, we have identified Kidins220 (Kinase D interacting substrate of 220 kDa)/ARMS (Ankyrin repeat-rich membrane spanning) as a main player in the modulation of neurotrophin and vascular endothelial growth factor (VEGF) signaling in vivo, and a primary determinant for neuronal and cardiovascular development. Kidins220−/− embryos die at late stages of gestation, and show extensive cell death in the central and peripheral nervous systems. Primary neurons from Kidins220−/− mice exhibit reduced responsiveness to brain-derived neurotrophic factor, in terms of activation of mitogen-activated protein kinase signaling, neurite outgrowth and potentiation of excitatory postsynaptic currents. In addition, mice lacking Kidins220 display striking cardiovascular abnormalities, possibly due to impaired VEGF signaling. In support of this hypothesis, we demonstrate that Kidins220 constitutively interacts with VEGFR2. These findings, together with the data presented in the accompanying paper, indicate that Kidins220 mediates the integration of several growth factor receptor pathways during development, and mediates the activation of distinct downstream cascades according to the location and timing of stimulation.


Human Molecular Genetics | 2013

Epileptogenic Q555X SYN1 mutant triggers imbalances in release dynamics and short-term plasticity

Gabriele Lignani; Andrea Raimondi; Enrico Ferrea; Anna Rocchi; Francesco Paonessa; Fabrizia Cesca; Marta Orlando; Tatiana Tkatch; Flavia Valtorta; Patrick Cossette; Pietro Baldelli; Fabio Benfenati

Synapsin I (SynI) is a synaptic vesicle (SV) phosphoprotein playing multiple roles in synaptic transmission and plasticity by differentially affecting crucial steps of SV trafficking in excitatory and inhibitory synapses. SynI knockout (KO) mice are epileptic, and nonsense and missense mutations in the human SYN1 gene have a causal role in idiopathic epilepsy and autism. To get insights into the mechanisms of epileptogenesis linked to SYN1 mutations, we analyzed the effects of the recently identified Q555X mutation on neurotransmitter release dynamics and short-term plasticity (STP) in excitatory and inhibitory synapses. We used patch-clamp electrophysiology coupled to electron microscopy and multi-electrode arrays to dissect synaptic transmission of primary SynI KO hippocampal neurons in which the human wild-type and mutant SynI were expressed by lentiviral transduction. A parallel decrease in the SV readily releasable pool in inhibitory synapses and in the release probability in excitatory synapses caused a marked reduction in the evoked synchronous release. This effect was accompanied by an increase in asynchronous release that was much more intense in excitatory synapses and associated with an increased total charge transfer. Q555X-hSynI induced larger facilitation and post-tetanic potentiation in excitatory synapses and stronger depression after long trains in inhibitory synapses. These changes were associated with higher network excitability and firing/bursting activity. Our data indicate that imbalances in STP and release dynamics of inhibitory and excitatory synapses trigger network hyperexcitability potentially leading to epilepsy/autism manifestations.


Cell Death and Disease | 2011

Kidins220/ARMS is an essential modulator of cardiovascular and nervous system development

Fabrizia Cesca; A Yabe; Bradley Spencer-Dene; A Arrigoni; M Al-Qatari; Deborah J. Henderson; Helen M. Phillips; M Koltzenburg; Fabio Benfenati; Giampietro Schiavo

The growth factor family of neurotrophins has major roles both inside and outside the nervous system. Here, we report a detailed histological analysis of key phenotypes generated by the ablation of the Kinase D interacting substrate of 220 kDa/Ankyrin repeat-rich membrane spanning (Kidins220/ARMS) protein, a membrane-anchored scaffold for the neurotrophin receptors Trk and p75NTR. Kidins220 is important for heart development, as shown by the severe defects in the outflow tract and ventricle wall formation displayed by the Kidins220 mutant mice. Kidins220 is also important for peripheral nervous system development, as the loss of Kidins220 in vivo caused extensive apoptosis of DRGs and other sensory ganglia. Moreover, the neuronal-specific deletion of this protein leads to early postnatal death, showing that Kidins220 also has a critical function in the postnatal brain.

Collaboration


Dive into the Fabrizia Cesca's collaboration.

Top Co-Authors

Avatar

Fabio Benfenati

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Pietro Baldelli

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Flavia Valtorta

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar

Tania Limongi

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Anna Rocchi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesco Paonessa

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Joachim Scholz-Starke

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Andrea Raimondi

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Annyesha Satapathy

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge