Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pietro Baldelli is active.

Publication


Featured researches published by Pietro Baldelli.


Progress in Neurobiology | 2010

The synapsins: Key actors of synapse function and plasticity

Fabrizia Cesca; Pietro Baldelli; Flavia Valtorta; Fabio Benfenati

The synapsins are a family of neuronal phosphoproteins evolutionarily conserved in invertebrate and vertebrate organisms. Their best-characterised function is to modulate neurotransmitter release at the pre-synaptic terminal, by reversibly tethering synaptic vesicles (SVs) to the actin cytoskeleton. However, many recent data have suggested novel functions for synapsins in other aspects of the pre-synaptic physiology, such as SV docking, fusion and recycling. Synapsin activity is tightly regulated by several protein kinases and phosphatases, which modulate the association of synapsins to SVs as well as their interaction with actin filaments and other synaptic proteins. In this context, synapsins act as a link between extracellular stimuli and the intracellular signalling events activated upon neuronal stimulation. Genetic manipulation of synapsins in various in vivo models has revealed that, although not essential for the basic development and functioning of neuronal networks, these proteins are extremely important in the fine-tuning of neuronal plasticity, as shown by the epileptic phenotype and behavioural abnormalities characterising mouse lines lacking one or more synapsin isoforms. In this review, we summarise the current knowledge about how the various members of the synapsin family are involved in the modulation of the pre-synaptic physiology. We give a comprehensive description of the molecular basis of synapsin function, as well as an overview of the more recent evidence linking mutations in the synapsin proteins to the onset of severe central nervous system diseases such as epilepsy and schizophrenia.


PLOS ONE | 2010

Acute Stress Increases Depolarization-Evoked Glutamate Release in the Rat Prefrontal/Frontal Cortex: The Dampening Action of Antidepressants

Laura Musazzi; Marco Milanese; Pasqualina Farisello; Simona Zappettini; Daniela Tardito; V.S. Barbiero; Tiziana Bonifacino; Alessandra Mallei; Pietro Baldelli; Giorgio Racagni; Maurizio Raiteri; Fabio Benfenati; Giambattista Bonanno; Maurizio Popoli

Background Behavioral stress is recognized as a main risk factor for neuropsychiatric diseases. Converging evidence suggested that acute stress is associated with increase of excitatory transmission in certain forebrain areas. Aim of this work was to investigate the mechanism whereby acute stress increases glutamate release, and if therapeutic drugs prevent the effect of stress on glutamate release. Methodology/Findings Rats were chronically treated with vehicle or drugs employed for therapy of mood/anxiety disorders (fluoxetine, desipramine, venlafaxine, agomelatine) and then subjected to unpredictable footshock stress. Acute stress induced marked increase in depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex in superfusion, and the chronic drug treatments prevented the increase of glutamate release. Stress induced rapid increase in the circulating levels of corticosterone in all rats (both vehicle- and drug-treated), and glutamate release increase was blocked by previous administration of selective antagonist of glucocorticoid receptor (RU 486). On the molecular level, stress induced accumulation of presynaptic SNARE complexes in synaptic membranes (both in vehicle- and drug-treated rats). Patch-clamp recordings of pyramidal neurons in the prefrontal cortex revealed that stress increased glutamatergic transmission through both pre- and postsynaptic mechanisms, and that antidepressants may normalize it by reducing release probability. Conclusions/Significance Acute footshock stress up-regulated depolarization-evoked release of glutamate from synaptosomes of prefrontal/frontal cortex. Stress-induced increase of glutamate release was dependent on stimulation of glucocorticoid receptor by corticosterone. Because all drugs employed did not block either elevation of corticosterone or accumulation of SNARE complexes, the dampening action of the drugs on glutamate release must be downstream of these processes. This novel effect of antidepressants on the response to stress, shown here for the first time, could be related to the therapeutic action of these drugs.


Human Molecular Genetics | 2011

SYN1 loss-of-function mutations in autism and partial epilepsy cause impaired synaptic function

Anna Fassio; Lysanne Patry; Sonia Congia; Franco Onofri; Amélie Piton; Julie Gauthier; Davide Pozzi; Mirko Messa; Enrico Defranchi; Manuela Fadda; Anna Corradi; Pietro Baldelli; Line Lapointe; Judith St-Onge; Caroline Meloche; Laurent Mottron; Flavia Valtorta; Dang Khoa Nguyen; Guy A. Rouleau; Fabio Benfenati; Patrick Cossette

Several genes predisposing to autism spectrum disorders (ASDs) with or without epilepsy have been identified, many of which are implicated in synaptic function. Here we report a Q555X mutation in synapsin 1 (SYN1), an X-linked gene encoding for a neuron-specific phosphoprotein implicated in the regulation of neurotransmitter release and synaptogenesis. This nonsense mutation was found in all affected individuals from a large French-Canadian family segregating epilepsy and ASDs. Additional mutations in SYN1 (A51G, A550T and T567A) were found in 1.0 and 3.5% of French-Canadian individuals with autism and epilepsy, respectively. The majority of these SYN1 mutations were clustered in the proline-rich D-domain which is substrate of multiple protein kinases. When expressed in synapsin I (SynI) knockout (KO) neurons, all the D-domain mutants failed in rescuing the impairment in the size and trafficking of synaptic vesicle pools, whereas the wild-type human SynI fully reverted the KO phenotype. Moreover, the nonsense Q555X mutation had a dramatic impact on phosphorylation by MAPK/Erk and neurite outgrowth, whereas the missense A550T and T567A mutants displayed impaired targeting to nerve terminals. These results demonstrate that SYN1 is a novel predisposing gene to ASDs, in addition to epilepsy, and strengthen the hypothesis that a disturbance of synaptic homeostasis underlies the pathogenesis of both diseases.


The Journal of Neuroscience | 2007

Lack of Synapsin I Reduces the Readily Releasable Pool of Synaptic Vesicles at Central Inhibitory Synapses

Pietro Baldelli; Anna Fassio; Flavia Valtorta; Fabio Benfenati

Synapsins (Syns) are synaptic vesicle (SV) phosphoproteins that play a role in neurotransmitter release and synaptic plasticity by acting at multiple steps of exocytosis. Mutation of SYN genes results in an epileptic phenotype in mouse and man suggesting a role of Syns in the control of network excitability. We have studied the effects of the genetic ablation of the SYN1 gene on inhibitory synaptic transmission in primary hippocampal neurons. Inhibitory neurons lacking SynI showed reduced amplitude of IPSCs evoked by isolated action potentials. The impairment in inhibitory transmission was caused by a decrease in the size of the SV readily releasable pool, rather than by changes in release probability or quantal size. The reduction of the readily releasable pool was caused by a decrease in the number of SVs released by single synaptic boutons in response to the action potential, in the absence of variations in the number of synaptic contacts between couples of monosynaptically connected neurons. The deletion of SYN1 did not affect paired-pulse depression or post-tetanic potentation, but was associated with a moderate increase of synaptic depression evoked by trains of action potentials, which became apparent at high stimulation frequencies and was accompanied by a slow down of recovery from depression. The decreased size of the SV readily releasable pool, coupled with a decreased SV recycling rate and refilling by the SV reserve pool, may contribute to the epileptic phenotype of SynI knock-out mice.


The Journal of Neuroscience | 2006

Protein Kinase A-Mediated Synapsin I Phosphorylation Is a Central Modulator of Ca2+-Dependent Synaptic Activity

Andrea Menegon; Dario Bonanomi; Chiara Albertinazzi; Francesco Lotti; Giuliana Ferrari; Hung-Teh Kao; Fabio Benfenati; Pietro Baldelli; Flavia Valtorta

Protein kinase A (PKA) modulates several steps of synaptic transmission. However, the identification of the mediators of these effects is as yet incomplete. Synapsins are synaptic vesicle (SV)-associated phosphoproteins that represent the major presynaptic targets of PKA. We show that, in hippocampal neurons, cAMP-dependent pathways affect SV exocytosis and that this effect is primarily brought about through synapsin I phosphorylation. Phosphorylation by PKA, by promoting dissociation of synapsin I from SVs, enhances the rate of SV exocytosis on stimulation. This effect becomes relevant when neurons are challenged with sustained stimulation, because it appears to counteract synaptic depression and accelerate recovery from depression by fostering the supply of SVs from the reserve pool to the readily releasable pool. In contrast, synapsin phosphorylation appears to be dispensable for the effects of cAMP on the frequency and amplitude of spontaneous synaptic currents and on the amplitude of evoked synaptic currents. The modulation of depolarization-evoked SV exocytosis by PKA phosphorylation of synapsin I is primarily caused by calmodulin (CaM)-dependent activation of cAMP pathways rather than by direct activation of CaM kinases. These data define a hierarchical crosstalk between cAMP- and CaM-dependent cascades and point to synapsin as a major effector of PKA in the modulation of activity-dependent SV exocytosis.


Cerebral Cortex | 2009

Opposite Changes in Glutamatergic and GABAergic Transmission Underlie the Diffuse Hyperexcitability of Synapsin I–Deficient Cortical Networks

Michela Chiappalone; Silvia Casagrande; Mariateresa Tedesco; Flavia Valtorta; Pietro Baldelli; Sergio Martinoia; Fabio Benfenati

Synapsins (Syns) are synaptic vesicle (SV) phosphoproteins that play a role in synaptic transmission and plasticity. Mutation of the SYN1 gene results in an epileptic phenotype in mouse and man, implicating SynI in the control of network excitability. We used microelectrode array and patch-clamp recordings to study network activity in primary cortical neurons from wild-type (WT) or SynI knockout (KO) mice. SYN1 deletion was associated with increased spontaneous and evoked activities, with more frequent and sustained bursts of action potentials and a high degree of synchronization. Blockade of GABA(A) (gamma-aminobutyric acid(A)) receptors with bicuculline attenuated, but did not completely abolish, the differences between WT and SynI KO networks in both spontaneous and evoked activities. Patch-clamp recordings on cortical autaptic neurons revealed a reduced amplitude of evoked inhibitory postsynaptic currents (PSCs) and a concomitantly increased amplitude of evoked excitatory PSCs in SynI KO neurons, in the absence of changes in miniature PSCs. Cumulative amplitude analysis revealed that these effects were attributable to opposite changes in the size of the readily releasable pool of SVs. The results indicate distinct roles of SynI in GABAergic and glutamatergic neurons and provide an explanation for the high susceptibility of SynI KO mice to epileptic seizures.


The Journal of Neuroscience | 2005

Brain-Derived Neurotrophic Factor Enhances GABA Release Probability and Nonuniform Distribution of N- and P/Q-Type Channels on Release Sites of Hippocampal Inhibitory Synapses

Pietro Baldelli; Jesus-Miguel Hernandez-Guijo; Valentina Carabelli; Emilio Carbone

Long-lasting exposures to brain-derived neurotrophic factor (BDNF) accelerate the functional maturation of GABAergic transmission in embryonic hippocampal neurons, but the molecular bases of this phenomenon are still debated. Evidence in favor of a postsynaptic site of action has been accumulated, but most of the data support a presynaptic site effect. A crucial issue is whether the enhancement of evoked IPSCs (eIPSCs) induced by BDNF is attributable to an increase in any of the elementary parameters controlling neurosecretion, namely the probability of release, the number of release sites, the readily releasable pool (RRP), and the quantal size. Here, using peak-scaled variance analysis of miniature IPSCs, multiple probability fluctuation analysis, and cumulative amplitude analysis of action potential-evoked postsynaptic currents, we show that BDNF increases release probability and vesicle replenishment with little or no effect on the quantal size, the number of release sites, the RRP, and the Ca2+ dependence of eIPSCs. BDNF treatment changes markedly the distribution of Ca2+ channels controlling neurotransmitter release. It enhances markedly the contribution of N- and P/Q-type channels, which summed to >100% (“supra-additivity”), and deletes the contribution of R-type channels. BDNF accelerates the switch of presynaptic Ca2+ channel distribution from “segregated” to “nonuniform” distribution. This maturation effect was accompanied by an uncovered increased control of N-type channels on paired-pulse depression, otherwise dominated by P/Q-type channels in untreated neurons. Nevertheless, BDNF preserved the fast recovery from depression associated with N-type channels. These novel presynaptic BDNF actions derive mostly from an enhanced overlapping and better colocalization of N- and P/Q-type channels to vesicle release sites.


European Journal of Neuroscience | 2002

BDNF up‐regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N‐ and P/Q‐type Ca2+ channels signalling

Pietro Baldelli; Monica Novara; Valentina Carabelli; J. M. Hernández-Guijo; Emilio Carbone

Chronic application of brain‐derived neurotrophic factor (BDNF) induces new selective synthesis of non‐L‐type Ca2+ channels (N, P/Q, R) at the soma of cultured hippocampal neurons. As N‐ and P/Q‐channels support neurotransmitter release in the hippocampus, this suggests that BDNF‐treatment may enhance synaptic transmission by increasing the expression of presynaptic Ca2+ channels as well. To address this issue we studied the long‐term effects of BDNF on miniature and stimulus‐evoked GABAergic transmission in rat embryo hippocampal neurons. We found that BDNF increased the frequency of miniature currents (mIPSCs) by ≈40%, with little effects on their amplitude. BDNF nearly doubled the size of evoked postsynaptic currents (eIPSCs) with a marked increase of paired‐pulse depression, which is indicative of a major increase in presynaptic activity. The potentiation of eIPSCs was more relevant during the first two weeks in culture, when GABAergic transmission is depolarizing. BDNF action was mediated by TrkB‐receptors and had no effects on: (i) the amplitude and dose–response of GABA‐evoked IPSCs and (ii) the number of GABAA receptor clusters and the total functioning synapses, suggesting that the neurotrophin unlikely acted postsynaptically. In line with this, BDNF affected the contribution of voltage‐gated Ca2+ channels mediating evoked GABAergic transmission. BDNF drastically increased the fraction of evoked IPSCs supported by N‐ and P/Q‐channels while it decreased the contribution associated with R‐ and L‐types. This selective action resembles the previously observed up‐regulatory effects of BDNF on somatic Ca2+ currents in developing hippocampus, suggesting that potentiation of presynaptic N‐ and P/Q‐channel signalling belongs to a manifold mechanism by which BDNF increases the efficiency of stimulus‐evoked GABAergic transmission.


The Journal of Physiology | 2004

Exposure to cAMP and β‐adrenergic stimulation recruits CaV3 T‐type channels in rat chromaffin cells through Epac cAMP‐receptor proteins

M. Novara; Pietro Baldelli; D. Cavallari; Valentina Carabelli; A. Giancippoli; Emilio Carbone

T‐type channels are expressed weakly or not at all in adult rat chromaffin cells (RCCs) and there is contrasting evidence as to whether they play a functional role in catecholamine secretion. Here we show that 3–5 days after application of pCPT‐cAMP, most RCCs grown in serum‐free medium expressed a high density of low‐voltage‐activated T‐type channels without altering the expression and characteristics of high‐voltage‐activated channels. The density of cAMP‐recruited T‐type channels increased with time and displayed the typical biophysical and pharmacological properties of low‐voltage‐activated Ca2+ channels: (1) steep voltage‐dependent activation from −50 mV in 10 mm Ca2+, (2) slow deactivation but fast and complete inactivation, (3) full inactivation following short conditioning prepulses to −30 mV, (4) effective block of Ca2+ influx with 50 μm Ni2+, (5) comparable permeability to Ca2+ and Ba2+, and (6) insensitivity to common Ca2+ channel antagonists. The action of exogenous pCPT‐cAMP (200 μm) was prevented by the protein synthesis inhibitor anisomycin and mimicked in most cells by exposure to forskolin and 1‐methyl‐3‐isobutylxanthine (IBMX) or isoprenaline. The protein kinase A (PKA) inhibitor H89 (0.3 μm) and the competitive antagonist of cAMP binding to PKA, Rp‐cAMPS, had weak or no effect on the action of pCPT‐cAMP. In line with this, the selective Epac agonist 8CPT‐2Me‐cAMP nicely mimicked the action of pCPT‐cAMP and isoprenaline, suggesting the existence of a dominant Epac‐dependent recruitment of T‐type channels in RCCs that may originate from the activation of β‐adrenoceptors. Stimulation of β‐adrenoceptors occurs autocrinally in RCCs and thus, the neosynthesis of low‐voltage‐activated channels may represent a new form of ‘chromaffin cell plasticity’, which contributes, by lowering the threshold of action potential firing, to increasing cell excitability and secretory activity during sustained sympathetic stimulation and/or increased catecholamine circulation.


PLOS ONE | 2012

Emergent Functional Properties of Neuronal Networks with Controlled Topology

Emanuele Marconi; Thierry Nieus; Alessandro Maccione; Pierluigi Valente; Alessandro Simi; Mirko Messa; Silvia Dante; Pietro Baldelli; Luca Berdondini; Fabio Benfenati

The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity.

Collaboration


Dive into the Pietro Baldelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Flavia Valtorta

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrico Ferrea

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Anna Fassio

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Pierluigi Valente

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Gabriele Lignani

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Lucian Medrihan

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Fabrizia Cesca

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge