Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrizio Accardi is active.

Publication


Featured researches published by Fabrizio Accardi.


BioMed Research International | 2015

Mechanism of Action of Bortezomib and the New Proteasome Inhibitors on Myeloma Cells and the Bone Microenvironment: Impact on Myeloma-Induced Alterations of Bone Remodeling

Fabrizio Accardi; Denise Toscani; Marina Bolzoni; Benedetta Dalla Palma; Franco Aversa; Nicola Giuliani

Multiple myeloma (MM) is characterized by a high capacity to induce alterations in the bone remodeling process. The increase in osteoclastogenesis and the suppression of osteoblast formation are both involved in the pathophysiology of the bone lesions in MM. The proteasome inhibitor (PI) bortezomib is the first drug designed and approved for the treatment of MM patients by targeting the proteasome. However, recently novel PIs have been developed to overcome bortezomib resistance. Interestingly, several preclinical data indicate that the proteasome complex is involved in both osteoclast and osteoblast formation. It is also evident that bortezomib either inhibits osteoclast differentiation induced by the receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL) or stimulates the osteoblast differentiation. Similarly, the new PIs including carfilzomib and ixazomib can inhibit bone resorption and stimulate the osteoblast differentiation. In a clinical setting, PIs restore the abnormal bone remodeling by normalizing the levels of bone turnover markers. In addition, a bone anabolic effect was described in responding MM patients treated with PIs, as demonstrated by the increase in the osteoblast number. This review summarizes the preclinical and clinical evidence on the effects of bortezomib and other new PIs on myeloma bone disease.


Journal of Bone and Mineral Research | 2016

The Proteasome Inhibitor Bortezomib Maintains Osteocyte Viability in Multiple Myeloma Patients by Reducing Both Apoptosis and Autophagy: A New Function for Proteasome Inhibitors.

Denise Toscani; Carla Palumbo; Benedetta Dalla Palma; Marzia Ferretti; Marina Bolzoni; Valentina Marchica; Paola Sena; Eugenia Martella; Cristina Mancini; Valentina Ferri; Federica Costa; Fabrizio Accardi; Luisa Craviotto; Franco Aversa; Nicola Giuliani

Multiple myeloma (MM) is characterized by severely imbalanced bone remodeling. In this study, we investigated the potential effect of proteasome inhibitors (PIs), a class of drugs known to stimulate bone formation, on the mechanisms involved in osteocyte death induced by MM cells. First, we performed a histological analysis of osteocyte viability on bone biopsies on a cohort of 37 MM patients with symptomatic disease. A significantly higher number of viable osteocytes was detected in patients treated with a bortezomib (BOR)‐based regimen compared with those treated without BOR. Interestingly, both osteocyte autophagy and apoptosis were affected in vivo by BOR treatment. Thereafter, we checked the in vitro effect of BOR to understand the mechanisms whereby BOR maintains osteocyte viability in bone from MM patients. We found that osteocyte and preosteocyte autophagic death was triggered during coculturing with MM cells. Our evaluation was conducted by analyzing either autophagy markers microtubule‐associated protein light chain 3 beta (LC3B) and SQSTM1/sequestome 1 (p62) levels, or the cell ultrastructure by transmission electron microscopy. PIs were found to increase the basal levels of LC3 expression in the osteocytes while blunting the myeloma‐induced osteocyte death. PIs also reduced the autophagic death of osteocytes induced by high‐dose dexamethasone (DEX) and potentiated the anabolic effect of PTH(1‐34). Our data identify osteocyte autophagy as a new potential target in MM bone disease and support the use of PIs to maintain osteocyte viability and improve bone integrity in MM patients.


Annals of the New York Academy of Sciences | 2015

The osteoblastic niche in the context of multiple myeloma

Denise Toscani; Marina Bolzoni; Fabrizio Accardi; Franco Aversa; Nicola Giuliani

The osteoblastic niche has a critical role in the regulation of hemopoietic stem cell (HSC) quiescence and self‐renewal and in the support of hematopoiesis. Several mechanisms are involved in the crosstalk between stem cells and osteoblasts, including soluble cytokines, adhesion molecules, and signal pathways such as the wingless‐Int (Wnt), Notch, and parathyroid hormone pathways. According to the most recent evidence, there is an overlap between osteoblastic and perivascular niches that affects HSC function involving mesenchymal stromal and endothelial cells and a gradient of oxygen regulated by hypoxia inducible factor (HIF)‐1α. Derived from plasma cells, multiple myeloma (MM) is a hematopoietic malignancy characterized by a peculiar dependency on the bone microenvironment. Quiescent MM cells may reside in the osteoblastic niche for protection from apoptotic stimuli; in turn, MM cells suppress osteoblast formation and function, leading to impairment of bone formation and the development of osteolytic lesions. Several recent studies have investigated the mechanisms involved in the relationship between osteoblasts and MM cells and identified potential therapeutic targets in the osteoblastic niche, including the HIF‐1α, Runx2, and Wnt (both canonical and noncanonical) signaling pathways.


Blood | 2016

Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target

Marina Bolzoni; Martina Chiu; Fabrizio Accardi; Rosanna Vescovini; Irma Airoldi; Paola Storti; Luca Agnelli; Gabriele Missale; Roberta Andreoli; Massimiliano G. Bianchi; Manfredi Allegri; Amelia Barilli; Francesco Nicolini; Albertina Cavalli; Federica Costa; Valentina Marchica; Denise Toscani; Cristina Mancini; Eugenia Martella; Valeria Dall'Asta; Gaetano Donofrio; Franco Aversa; Ovidio Bussolati; Nicola Giuliani

The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role as a therapeutic target are still unknown, although it has been reported that human myeloma cell lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and primary bone marrow (BM) CD138(+) cells produced large amounts of ammonium in the presence of Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients with indolent monoclonal gammopathies. Interestingly, HMCLs expressed glutaminase (GLS1) and were sensitive to its inhibition, whereas they exhibited negligible expression of glutamine synthetase (GS). High GLS1 and low GS expression were also observed in primary CD138(+) cells. Gln-free incubation or treatment with the glutaminolytic enzyme l-asparaginase depleted the cell contents of Gln, glutamate, and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile analysis, on both proprietary and published datasets, showed an increased expression of the Gln transporters SNAT1, ASCT2, and LAT1 by CD138(+) cells across the progression of monoclonal gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 downregulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In conclusion, MM cells strictly depend on extracellular Gln and show features of Gln addiction. Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM.


Leukemia | 2016

Osteolytic lesions, cytogenetic features and bone marrow levels of cytokines and chemokines in multiple myeloma patients: Role of chemokine (C-C motif) ligand 20

B. Dalla Palma; Daniela Guasco; M. Pedrazzoni; Marina Bolzoni; Fabrizio Accardi; Federica Costa; Gabriella Sammarelli; Luisa Craviotto; M. De Filippo; Livia Ruffini; P Omedè; R Ria; Franco Aversa; Nicola Giuliani

The relationship between bone marrow (BM) cytokine and chemokine levels, cytogenetic profiles and skeletal involvement in multiple myeloma (MM) patients is not yet defined. This study investigated a cohort of 455 patients including monoclonal gammopathy of uncertain significance (MGUS), smoldering MM and symptomatic MM patients. Skeletal surveys, positron emission tomography (PET)/computerized tomography (CT) and magnetic resonance imaging (MRI) were used to identify myeloma bone disease. Significantly higher median BM levels of both C-C motif Ligand (CCL)3 and CCL20 were found in MM patients with radiographic evidence of osteolytic lesions as compared with those without, and in all MM patients with positive PET/CT scans. BM levels of CCL3, CCL20, Activin-A and Dickkopf-1 (DKK-1) were significantly higher in patients with high bone disease as compared with patients with low bone disease. Moreover, CCL20 BM levels were significant predictors of osteolysis on X-rays by multivariate logistic analysis. On the other hand, DKK-1 levels were related to the presence of MRI lesions independently of the osteolysis at the X-rays. Our data define the relationship between bone disease and the BM cytokine and chemokine patterns highlighting the tight relationship between CCL20 BM levels and osteolysis in MM.


Oncotarget | 2017

Expression of CD38 in myeloma bone niche: A rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation

Federica Costa; Denise Toscani; Antonella Chillemi; Valeria Quarona; Marina Bolzoni; Valentina Marchica; Rosanna Vescovini; Cristina Mancini; Eugenia Martella; Nicoletta Campanini; Chiara Schifano; Sabrina Bonomini; Fabrizio Accardi; Alberto L. Horenstein; Franco Aversa; Fabio Malavasi; Nicola Giuliani

It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation. These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation.These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.


Oncotarget | 2017

Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties

Federica Costa; Rosanna Vescovini; Marina Bolzoni; Valentina Marchica; Paola Storti; Denise Toscani; Fabrizio Accardi; Laura Notarfranchi; Benedetta Dalla Palma; Cristina Manferdini; Sabrina Manni; Giannalisa Todaro; Gina Lisignoli; Francesco Piazza; Franco Aversa; Nicola Giuliani

The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14+ cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3+ cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14+ cells obtained from patients with multiple myeloma or from a human monocytic cell line.LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3+ cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes.In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.


Haematologica | 2017

IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts

Marina Bolzoni; Domenica Ronchetti; Paola Storti; Gaetano Donofrio; Valentina Marchica; Federica Costa; Luca Agnelli; Denise Toscani; Rosanna Vescovini; Sabrina Bonomini; Gabriella Sammarelli; Andrea Vecchi; Daniela Guasco; Fabrizio Accardi; Benedetta Dalla Palma; Barbara Gamberi; Carlo Ferrari; Antonino Neri; Franco Aversa; Nicola Giuliani

Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo. Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21R. IL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.


Calcified Tissue International | 2018

The Proteasome and Myeloma-Associated Bone Disease

Fabrizio Accardi; Denise Toscani; Federica Costa; Franco Aversa; Nicola Giuliani

Bone disease is the hallmark of multiple myeloma (MM), a hematological malignancy characterized by osteolytic lesions due to a severe uncoupled and unbalanced bone remodeling with pronounced osteoblast suppression. Bone metastasis is also a frequent complication of solid tumors including advanced breast or prostate cancer. In the past years, the ubiquitin–proteasome pathway has been proved critical in regulating the balance between bone formation and bone resorption. Proteasome inhibitors (PIs) are a new class of drugs, currently used in the treatment of MM, that affect both tumor cells and bone microenvironment. Particularly, PIs stimulate osteoblast differentiation by human mesenchymal stromal cells and increase bone regeneration in mice. Interestingly, in vitro data indicate that PIs block MM-induced osteoblast and osteocyte cell death by targeting both apoptosis and autophagy. The preclinical data are supported by the following effects observed in MM patients treated with PIs: increase of bone alkaline phosphatase levels, normalization of the markers of bone turnover, and reduction of the skeletal-related events. Moreover, the histomorphometric data indicate that the treatment with bortezomib stimulates osteoblast formation and maintains osteocyte viability in MM patients. This review updates the evidence on the effects of PIs on bone remodeling and on cancer-induced bone disease while focusing on MM bone disease.


International Journal of Hematology | 2017

Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?

Valentina Marchica; Fabrizio Accardi; Paola Storti; Cristina Mancini; Eugenia Martella; Benedetta Dalla Palma; Marina Bolzoni; Magda Marcatti; Chiara Schifano; Sabrina Bonomini; Gabriella Sammarelli; Antonino Neri; Maurilio Ponzoni; Franco Aversa; Nicola Giuliani

The skin is a possible site of extramedullary localization in multiple myeloma (MM) patients; however, the mechanisms involved in this process are poorly understood. We describe the case of a refractory MM patient who developed a cutaneous localization under bortezomib treatment and we further expanded observations in other eight MM patients. We focused on the expression of genes involved in plasma cell skin homing, including CCR10, which was highly expressed. Moreover, we observed a lack of CXCR4 surface expression and the down-regulation of ICAM1/CD54 throughout the progression of the disease, suggesting a possible mechanism driving the escape of MM cells from the bone marrow into the skin.

Collaboration


Dive into the Fabrizio Accardi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge