Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valentina Marchica is active.

Publication


Featured researches published by Valentina Marchica.


Journal of Bone and Mineral Research | 2016

The Proteasome Inhibitor Bortezomib Maintains Osteocyte Viability in Multiple Myeloma Patients by Reducing Both Apoptosis and Autophagy: A New Function for Proteasome Inhibitors.

Denise Toscani; Carla Palumbo; Benedetta Dalla Palma; Marzia Ferretti; Marina Bolzoni; Valentina Marchica; Paola Sena; Eugenia Martella; Cristina Mancini; Valentina Ferri; Federica Costa; Fabrizio Accardi; Luisa Craviotto; Franco Aversa; Nicola Giuliani

Multiple myeloma (MM) is characterized by severely imbalanced bone remodeling. In this study, we investigated the potential effect of proteasome inhibitors (PIs), a class of drugs known to stimulate bone formation, on the mechanisms involved in osteocyte death induced by MM cells. First, we performed a histological analysis of osteocyte viability on bone biopsies on a cohort of 37 MM patients with symptomatic disease. A significantly higher number of viable osteocytes was detected in patients treated with a bortezomib (BOR)‐based regimen compared with those treated without BOR. Interestingly, both osteocyte autophagy and apoptosis were affected in vivo by BOR treatment. Thereafter, we checked the in vitro effect of BOR to understand the mechanisms whereby BOR maintains osteocyte viability in bone from MM patients. We found that osteocyte and preosteocyte autophagic death was triggered during coculturing with MM cells. Our evaluation was conducted by analyzing either autophagy markers microtubule‐associated protein light chain 3 beta (LC3B) and SQSTM1/sequestome 1 (p62) levels, or the cell ultrastructure by transmission electron microscopy. PIs were found to increase the basal levels of LC3 expression in the osteocytes while blunting the myeloma‐induced osteocyte death. PIs also reduced the autophagic death of osteocytes induced by high‐dose dexamethasone (DEX) and potentiated the anabolic effect of PTH(1‐34). Our data identify osteocyte autophagy as a new potential target in MM bone disease and support the use of PIs to maintain osteocyte viability and improve bone integrity in MM patients.


Blood | 2016

Dependence on glutamine uptake and glutamine addiction characterize myeloma cells: a new attractive target

Marina Bolzoni; Martina Chiu; Fabrizio Accardi; Rosanna Vescovini; Irma Airoldi; Paola Storti; Luca Agnelli; Gabriele Missale; Roberta Andreoli; Massimiliano G. Bianchi; Manfredi Allegri; Amelia Barilli; Francesco Nicolini; Albertina Cavalli; Federica Costa; Valentina Marchica; Denise Toscani; Cristina Mancini; Eugenia Martella; Valeria Dall'Asta; Gaetano Donofrio; Franco Aversa; Ovidio Bussolati; Nicola Giuliani

The importance of glutamine (Gln) metabolism in multiple myeloma (MM) cells and its potential role as a therapeutic target are still unknown, although it has been reported that human myeloma cell lines (HMCLs) are highly sensitive to Gln depletion. In this study, we found that both HMCLs and primary bone marrow (BM) CD138(+) cells produced large amounts of ammonium in the presence of Gln. MM patients have lower BM plasma Gln with higher ammonium and glutamate than patients with indolent monoclonal gammopathies. Interestingly, HMCLs expressed glutaminase (GLS1) and were sensitive to its inhibition, whereas they exhibited negligible expression of glutamine synthetase (GS). High GLS1 and low GS expression were also observed in primary CD138(+) cells. Gln-free incubation or treatment with the glutaminolytic enzyme l-asparaginase depleted the cell contents of Gln, glutamate, and the anaplerotic substrate 2-oxoglutarate, inhibiting MM cell growth. Consistent with the dependence of MM cells on extracellular Gln, a gene expression profile analysis, on both proprietary and published datasets, showed an increased expression of the Gln transporters SNAT1, ASCT2, and LAT1 by CD138(+) cells across the progression of monoclonal gammopathies. Among these transporters, only ASCT2 inhibition in HMCLs caused a marked decrease in Gln uptake and a significant fall in cell growth. Consistently, stable ASCT2 downregulation by a lentiviral approach inhibited HMCL growth in vitro and in a murine model. In conclusion, MM cells strictly depend on extracellular Gln and show features of Gln addiction. Therefore, the inhibition of Gln uptake is a new attractive therapeutic strategy for MM.


Oncotarget | 2017

Expression of CD38 in myeloma bone niche: A rational basis for the use of anti-CD38 immunotherapy to inhibit osteoclast formation

Federica Costa; Denise Toscani; Antonella Chillemi; Valeria Quarona; Marina Bolzoni; Valentina Marchica; Rosanna Vescovini; Cristina Mancini; Eugenia Martella; Nicoletta Campanini; Chiara Schifano; Sabrina Bonomini; Fabrizio Accardi; Alberto L. Horenstein; Franco Aversa; Fabio Malavasi; Nicola Giuliani

It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation. These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.It is known that multiple myeloma (MM) cells express CD38 and that a recently developed human anti-CD38 monoclonal antibody Daratumumab mediates myeloma killing. However, the expression of CD38 and other functionally related ectoenzymes within the MM bone niche and the potential effects of Daratumumab on bone cells are still unknown. This study firstly defines by flow cytometry and immunohistochemistry the expression of CD38 by bone marrow cells in a cohort of patients with MM and indolent monoclonal gammopathies. Results indicate that only plasma cells expressed CD38 at high level within the bone niche. In addition, the flow cytometry analysis shows that CD38 was also expressed by monocytes and early osteoclast progenitors but not by osteoblasts and mature osteoclasts. Indeed, CD38 was lost during in vitro osteoclastogenesis. Consistently, we found that Daratumumab reacted with CD38 expressed on monocytes and its binding inhibited in vitro osteoclastogenesis and bone resorption activity from bone marrow total mononuclear cells of MM patients, targeting early osteoclast progenitors. The inhibitory effect was not observed from purified CD14+ cells, suggesting an indirect inhibitory effect of Daratumumab. Interestingly, all-trans retinoic acid treatment increased the inhibitory effect of Daratumumab on osteoclast formation.These observations provide a rationale for the use of an anti-CD38 antibody-based approach as treatment for multiple myeloma-induced osteoclastogenesis.


Oncotarget | 2017

Lenalidomide increases human dendritic cell maturation in multiple myeloma patients targeting monocyte differentiation and modulating mesenchymal stromal cell inhibitory properties

Federica Costa; Rosanna Vescovini; Marina Bolzoni; Valentina Marchica; Paola Storti; Denise Toscani; Fabrizio Accardi; Laura Notarfranchi; Benedetta Dalla Palma; Cristina Manferdini; Sabrina Manni; Giannalisa Todaro; Gina Lisignoli; Francesco Piazza; Franco Aversa; Nicola Giuliani

The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14+ cells obtained from patients with multiple myeloma or from a human monocytic cell line. LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3+ cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes. In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.The use of Lenalidomide (LEN), to reverse tumor-mediated immune suppression and amplify multiple myeloma-specific immunity is currently being explored. Particularly, LEN effects on dendritic cells (DCs) are still unclear. In this study, we investigated the potential effect of LEN on DC differentiation and activity. DCs were differentiated either from CD14+ cells obtained from patients with multiple myeloma or from a human monocytic cell line.LEN, at the concentration range reached in vivo, significantly increased the median intensity expression of HLA-DR, CD86 and CD209 by DCs derived from both bone marrow and peripheral myeloma monocytes and enhanced the production of Interleukin-8, C-C motif chemokine ligand (CCL) 2, CCL5 and tumor necrosis factor-α. Consistently, LEN pre-treated DCs showed an increased ability to stimulate autologous CD3+ cell proliferation. LEN effect on dendritic differentiation was associated with the degradation of the Cereblon-related factors Ikaros and Aiolos. Moreover, we showed that LEN also blunted mesenchymal stromal cell inhibitory effect on dendritic differentiation, inhibiting Casein Kinase-1α levels. Finally, in vitro data were confirmed in ex vivo cultures obtained from relapsed myeloma patients treated with LEN, showing a significant increase of DC differentiation from peripheral blood monocytes.In conclusion, LEN increased the expression of mature dendritic markers both directly and indirectly and enhanced DC ability to stimulate T cell proliferation and to release chemokines. This suggests a new possible mechanism by which LEN could exert its anti-myeloma activity.


Leukemia | 2016

Galectin-1 suppression delineates a new strategy to inhibit myeloma-induced angiogenesis and tumoral growth in vivo.

Paola Storti; Valentina Marchica; Irma Airoldi; Gaetano Donofrio; Elena Fiorini; Valentina Ferri; Daniela Guasco; Rebecca Silbermann; Judith Anderson; W. Zhao; Luca Agnelli; Marina Bolzoni; Eugenia Martella; Cristina Mancini; Nicoletta Campanini; Douglas M Noonan; Pier Giorgio Petronini; Antonino Neri; Franco Aversa; G. D. Roodman; Nicola Giuliani

Galectin-1 (Gal-1) is involved in tumoral angiogenesis, hypoxia and metastases. Actually the Gal-1 expression profile in multiple myeloma (MM) patients and its pathophysiological role in MM-induced angiogenesis and tumoral growth are unknown. In this study, we found that Gal-1 expression by MM cells was upregulated in hypoxic conditions and that stable knockdown of hypoxia inducible factor-1α significantly downregulated its expression. Therefore, we performed Gal-1 inhibition using lentivirus transfection of shRNA anti-Gal-1 in human myeloma cell lines (HMCLs), and showed that its suppression modified transcriptional profiles in both hypoxic and normoxic conditions. Interestingly, Gal-1 inhibition in MM cells downregulated proangiogenic genes, including MMP9 and CCL2, and upregulated the antiangiogenic ones SEMA3A and CXCL10. Consistently, Gal-1 suppression in MM cells significantly decreased their proangiogenic properties in vitro. This was confirmed in vivo, in two different mouse models injected with HMCLs transfected with anti-Gal-1 shRNA or the control vector. Gal-1 suppression in both models significantly reduced tumor burden and microvascular density as compared with the control mice. Moreover, Gal-1 suppression induced smaller lytic lesions on X-ray in the intratibial model. Overall, our data indicate that Gal-1 is a new potential therapeutic target in MM blocking angiogenesis.


International Journal of Molecular Sciences | 2017

Role of Galectins in Multiple Myeloma

Paola Storti; Valentina Marchica; Nicola Giuliani

Galectins are a family of lectins that bind β-galactose-containing glycoconjugates and are characterized by carbohydrate-recognition domains (CRDs). Galectins exploit several biological functions, including angiogenesis, regulation of immune cell activities and cell adhesion, in both physiological and pathological processes, as tumor progression. Multiple myeloma (MM) is a plasma cell (PC) malignancy characterized by the tight adhesion between tumoral PCs and bone marrow (BM) microenvironment, leading to the increase of PC survival and drug resistance, MM-induced neo-angiogenesis, immunosuppression and osteolytic bone lesions. In this review, we explore the expression profiles and the roles of galectin-1, galectin-3, galectin-8 and galectin-9 in the pathophysiology of MM. We focus on the role of these lectins in the interplay between MM and BM microenvironment cells showing their involvement in MM progression mainly through the regulation of PC survival and MM-induced angiogenesis and osteoclastogenesis. The translational impact of these pre-clinical pieces of evidence is supported by recent data that indicate galectins could be new attractive targets to block MM cell growth in vivo and by the evidence that the expression levels of LGALS1 and LGALS8, genes encoding for galectin-1 and galectin-8 respectively, correlate to MM patients’ survival.


Haematologica | 2017

IL21R expressing CD14+CD16+ monocytes expand in multiple myeloma patients leading to increased osteoclasts

Marina Bolzoni; Domenica Ronchetti; Paola Storti; Gaetano Donofrio; Valentina Marchica; Federica Costa; Luca Agnelli; Denise Toscani; Rosanna Vescovini; Sabrina Bonomini; Gabriella Sammarelli; Andrea Vecchi; Daniela Guasco; Fabrizio Accardi; Benedetta Dalla Palma; Barbara Gamberi; Carlo Ferrari; Antonino Neri; Franco Aversa; Nicola Giuliani

Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo. Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21R. IL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.


Haematologica | 2016

The anti-tumoral effect of lenalidomide is increased in vivo by hypoxia-inducible factor (HIF)-1α inhibition in myeloma cells.

Paola Storti; Denise Toscani; Irma Airoldi; Valentina Marchica; Sophie Maïga; Marina Bolzoni; Elena Fiorini; Nicoletta Campanini; Eugenia Martella; Cristina Mancini; Daniela Guasco; Valentina Ferri; Gaetano Donofrio; Franco Aversa; Martine Amiot; Nicola Giuliani

We investigated the effect of stable suppression of hypoxia inducible factor (HIF)-1α in myeloma cells on sensitivity to lenalidomide (LEN) in vivo . We found that the in vivo anti-tumoral effect of LEN is enhanced by HIF-1α suppression in myeloma cells. It has been reported that HIF-1α is over-


International Journal of Hematology | 2017

Cutaneous localization in multiple myeloma in the context of bortezomib-based treatment: how do myeloma cells escape from the bone marrow to the skin?

Valentina Marchica; Fabrizio Accardi; Paola Storti; Cristina Mancini; Eugenia Martella; Benedetta Dalla Palma; Marina Bolzoni; Magda Marcatti; Chiara Schifano; Sabrina Bonomini; Gabriella Sammarelli; Antonino Neri; Maurilio Ponzoni; Franco Aversa; Nicola Giuliani

The skin is a possible site of extramedullary localization in multiple myeloma (MM) patients; however, the mechanisms involved in this process are poorly understood. We describe the case of a refractory MM patient who developed a cutaneous localization under bortezomib treatment and we further expanded observations in other eight MM patients. We focused on the expression of genes involved in plasma cell skin homing, including CCR10, which was highly expressed. Moreover, we observed a lack of CXCR4 surface expression and the down-regulation of ICAM1/CD54 throughout the progression of the disease, suggesting a possible mechanism driving the escape of MM cells from the bone marrow into the skin.


Expert Review of Hematology | 2018

Possible targets to treat myeloma-related osteoclastogenesis

Marina Bolzoni; Denise Toscani; Paola Storti; Valentina Marchica; Federica Costa; Nicola Giuliani

ABSTRACT Introduction: Bone destruction is the hallmark of multiple myeloma (MM). About 80% of MM patients at diagnosis presents myeloma bone disease (MBD) leading to bone pain and pathological fractures, significantly affecting patients’ quality of life. Bisphosphonates are the treatment of choice for MBD, but osteolytic lesions remain a critical issue in the current management of MM patients. Several studies clarified the mechanisms involved in MM-induced osteoclast formation and activation, leading to the identification of new possible targets and the development of better bone-directed therapies, that are discussed in this review. Areas covered: This review summarizes the latest advances in the knowledge of the pathophysiology of the osteoclast formation and activation induced by MM cells, and the new therapeutic targets identified. Recently, neutralizing antibodies (i.e. denosumab, siltuximab, daratumumab), as well as recombinant fusion proteins, and receptor molecular inhibitors, have been developed to block these targets. Clinical trials testing their anti-MBD potential are ongoing. The emerging role of exosomes and microRNAs in the regulation of osteoclast differentiation has been also discussed. Expert commentary: Although further studies are needed to arrive at a clinical approving, the basis for the development of better bone-directed therapies has been established.

Collaboration


Dive into the Valentina Marchica's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge