Faith H. Brennan
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Faith H. Brennan.
Journal of Neuroinflammation | 2012
Faith H. Brennan; Aileen J. Anderson; Stephen M. Taylor; Trent M. Woodruff; Marc J. Ruitenberg
The complement system, a major component of the innate immune system, is becoming increasingly recognised as a key participant in physiology and disease. The awareness that immunological mediators support various aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-ranging involvement of complement in neural development, synapse elimination and maturation of neural networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement activation. The purpose of this review is to summarise recent findings on complement activation and acquired brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating consequences of these neurological conditions.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Mike C. L. Wu; Faith H. Brennan; Jason P. Lynch; Susanna Mantovani; Simon Phipps; Rick A. Wetsel; Marc J. Ruitenberg; Stephen M. Taylor; Trent M. Woodruff
C3a is a key complement activation fragment, yet its neutrophil-expressed receptor (C3aR) still has no clearly defined role. In this study, we used a neutrophil-dependent mouse model of intestinal ischemia-reperfusion (IR) injury to explore the role of C3aR in acute tissue injuries. C3aR deficiency worsened intestinal injury, which corresponded with increased numbers of tissue-infiltrating neutrophils. Circulating neutrophils were significantly increased in C3aR−/− mice after intestinal ischemia, and C3aR−/− mice also mobilized more circulating neutrophils after granulocyte colony-stimulating factor infusion compared with WT mice, indicating a specific role for C3aR in constraining neutrophil mobilization in response to intestinal injury. In support of this role, C3aR−/− mice reconstituted with WT bone marrow reversed IR pathology back to WT levels. Complement C5a receptor (C5aR) antagonism in C3aR−/− mice also rectified the worsened pathology after intestinal IR injury but had no effect on circulating neutrophils, highlighting the opposing roles of C3a and C5a in disease pathogenesis. Finally, we found that using a potent C3a agonist to activate C3aR in vivo reduced neutrophil mobilization and ameliorated intestinal IR pathology in WT, but not C3aR−/−, mice. This study identifies a role for C3aR in regulating neutrophil mobilization after acute intestinal injury and highlights C3aR agonism as a potential treatment option for acute, neutrophil-driven pathologies.
Experimental Neurology | 2013
Linda V. Blomster; Faith H. Brennan; Hong W. Lao; David W. Harle; Alan R. Harvey; Marc J. Ruitenberg
Macrophages in the injured spinal cord originate from resident microglia and blood monocytes. Whether this diversity in origins contributes to their seemingly dual role in immunopathology and repair processes has remained poorly understood. Here we took advantage of Cx₃cr1(gfp) mice to visualise monocyte-derived macrophages in the injured spinal cord via adoptive cell transfer and bone marrow (BM) chimera approaches. We show that the majority of infiltrating monocytes at 7 days post-injury originate from the spleen and only to a lesser extent from the BM. Prevention of early monocyte infiltration via splenectomy was associated with improved recovery at 42 days post-SCI. In addition, an increased early presence of infiltrating monocytes/macrophages, as a result of CX₃CR1 deficiency within the peripheral immune compartment, correlated with worsened injury outcomes. Adoptive transfer of identified Cx₃cr1(gfp/+) monocytes confirmed peak infiltration at 7 days post-injury, with inflammatory (Ly6C(high)) monocytes being most efficiently recruited. Focal SCI also changed the composition of the two major monocyte subsets in the blood, with more Ly6C(high) cells present during peak recruitment. Adoptive transfer experiments further suggested high turnover of inflammatory monocytes in the spinal cord at 7 days post-injury. Consistent with this, only a small proportion of infiltrating cells unequivocally expressed polarisation markers for pro-inflammatory (M1) or alternatively activated (M2) macrophages at this time point. Our findings offer new insights into the origins of monocyte-derived macrophages after SCI and their contribution to functional recovery, providing a basis for further scrutiny and selective targeting of Ly6C(high) monocytes to improve outcomes from neurotraumatic events.
Nature Communications | 2014
Pei Ching Low; Silvia Manzanero; Nika Mohannak; Vinod K. Narayana; Tam Nguyen; David Kvaskoff; Faith H. Brennan; Marc J. Ruitenberg; Mathias Gelderblom; Tim Magnus; Helena H A Kim; Bradley Rs Broughton; Christopher G. Sobey; Bart Vanhaesebroeck; Jennifer L. Stow; Thiruma V. Arumugam; Frederic A. Meunier
Stroke is a major cause of death worldwide and the leading cause of permanent disability. Although reperfusion is currently used as treatment, the restoration of blood flow following ischaemia elicits a profound inflammatory response mediated by proinflammatory cytokines such as tumour necrosis factor (TNF), exacerbating tissue damage and worsening the outcomes for stroke patients. Phosphoinositide 3-kinase delta (PI3Kδ) controls intracellular TNF trafficking in macrophages and therefore represents a prospective target to limit neuroinflammation. Here we show that PI3Kδ inhibition confers protection in ischaemia/reperfusion models of stroke. In vitro, restoration of glucose supply following an episode of glucose deprivation potentiates TNF secretion from primary microglia-an effect that is sensitive to PI3Kδ inhibition. In vivo, transient middle cerebral artery occlusion and reperfusion in kinase-dead PI3Kδ (p110δ(D910A/D910A)) or wild-type mice pre- or post-treated with the PI3Kδ inhibitor CAL-101, leads to reduced TNF levels, decreased leukocyte infiltration, reduced infarct size and improved functional outcome. These data identify PI3Kδ as a potential therapeutic target in ischaemic stroke.
NeuroImage | 2013
Faith H. Brennan; Gary Cowin; Nyoman D. Kurniawan; Marc J. Ruitenberg
This study examined the sensitivity of ultra-high field (16.4 T) diffusion tensor imaging (DTI; 70 μm in-plane resolution, 1mm slice thickness) to evaluate the spatiotemporal development of severe mid-thoracic contusive spinal cord injury (SCI) in mice. In vivo imaging was performed prior to SCI, then again at 2h, 1 day, 3 days, 7 days, and 30 days post-SCI using a Bruker 16.4 T small animal nuclear magnetic resonance spectrometer. Cross-sectional spinal cord areas were measured in axial slices and various DTI parameters, i.e. fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (λ||) and radial diffusivity (λ⊥), were calculated for the total spared white matter (WM), ventral funiculi (VF), lateral funiculi (LF) and dorsal columns (DCs) and then correlated with histopathology. Cross-sectional area measurements revealed significant atrophy (32% reduction) of the injured spinal cord at the lesion epicentre in the chronic phase of injury. Analysis of diffusion tensor parameters further showed that tissue integrity was most severely affected in the DCs, i.e. the site of immediate impact, which demonstrated a rapid and permanent decrease in FA and λ||. In contrast, DTI parameters for the ventrolateral white matter changed more gradually with time, suggesting that these regions are undergoing more delayed degeneration in a manner that may be amenable to therapeutic intervention. Of all the DTI parameters, λ⊥ was most closely correlated to myelin content whereas changes in FA and λ|| appeared more indicative of axonal integrity, Wallerian degeneration and associated presence of macrophages. We conclude that longitudinal DTI at 16.4T provides a clinically relevant, objective measure for assessing white matter pathology following contusive SCI in mice that may aid the translation of putative neuroprotective strategies into the clinic.
Seminars in Immunology | 2016
Faith H. Brennan; John D. Lee; Marc J. Ruitenberg; Trent M. Woodruff
The recognition that complement proteins are abundantly present and can have pathological roles in neurological conditions offers broad scope for therapeutic intervention. Accordingly, an increasing number of experimental investigations have explored the potential of harnessing the unique activation pathways, proteases, receptors, complexes, and natural inhibitors of complement, to mitigate pathology in acute neurotrauma and chronic neurodegenerative diseases. Here, we review mechanisms of complement activation in the central nervous system (CNS), and explore the effects of complement inhibition in cerebral ischemic-reperfusion injury, traumatic brain injury, spinal cord injury, Alzheimers disease, amyotrophic lateral sclerosis, Parkinsons disease and Huntingtons disease. We consider the challenges and opportunities arising from these studies. As complement therapies approach clinical translation, we provide perspectives on how promising complement-targeted therapeutics could become part of novel and effective future treatment options to improve outcomes in the initiation and progression stages of these debilitating CNS disorders.
Annals of clinical and translational neurology | 2016
Faith H. Brennan; Nyoman D. Kurniawan; Jana Vukovic; Perry F. Bartlett; Fabian Käsermann; Thiruman V. Arumugam; Milan Basta; Marc J. Ruitenberg
Traumatic spinal cord injury (SCI) elicits immediate neural cell death, axonal damage, and disruption of the blood–spinal cord barrier, allowing circulating immune cells and blood proteins into the spinal parenchyma. The inflammatory response to SCI involves robust complement system activation, which contributes to secondary injury and impairs neurological recovery. This study aimed to determine whether intravenous immunoglobulin (IVIg), an FDA‐approved treatment for inflammatory conditions, can scavenge complement activation products and improve recovery from contusive SCI.
Neural Regeneration Research | 2015
Faith H. Brennan; Marc J. Ruitenberg
Immune effector mechanisms play key roles in the progressive (secondary) neurodegenerative changes that follow spinal cord injury (SCI). In our recent paper (Brennan et al., 2015), we showed that the inflammatory response to SCI includes rapid and robust activation of the innate immune complement system, with tissue levels of complement component 5a (C5a – an activation product generated by the proteolysis of complement factor 5 (C5)) peaking 12 to 24 hours post-injury.
Immunobiology | 2012
Trent M. Woodruff; Mike C. L. Wu; Faith H. Brennan; Rick A. Wetsel; Marc J. Ruitenberg; Stephen M. Taylor
Journal of Neuroimmunology | 2012
Faith H. Brennan; Linda V. Blomster; Alexander M. Costantini; Stephen M. Taylor; Trent M. Woodruff; Marc J. Ruitenberg