Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Falei Yuan is active.

Publication


Featured researches published by Falei Yuan.


Stroke | 2012

Netrin-1 Hyperexpression in Mouse Brain Promotes Angiogenesis and Long-Term Neurological Recovery After Transient Focal Ischemia

Haiyan Lu; Yongting Wang; Xiaosong He; Falei Yuan; Xiaojie Lin; Bohua Xie; Guanghui Tang; Jun Huang; Yaohui Tang; Kunlin Jin; Shengdi Chen; Guo-Yuan Yang

Background and Purpose— Netrin-1 (NT-1) stimulates endothelial cell proliferation and migration in vitro and promotes focal neovascularization in the adult brain in vivo. This in vivo study in mice investigated the effect of NT-1 hyperexpression on focal angiogenesis and long-term functional outcome after transient middle cerebral artery occlusion (tMCAO). Methods— Adeno-associated viral vectors carrying either the NT-1 gene (AAV–NT-1) or GFP (AAV-GFP) were generated and injected into the brains of separate groups of 93 mice. Seven days later, tMCAO followed by 7–28 days of reperfusion were carried out. Histological outcomes and behavioral deficits were quantified 7–28 days after tMCAO. Small cerebral vessel network and angiogenesis were assessed 28 days after tMCAO, using synchrotron radiation microangiography and immunohistochemistry. Results— Western blot and immunohistochemistry showed that on the day of tMCAO, NT-1 hyperexpression had been achieved in both normal and ischemic hemispheres. Immunofluorescence imaging showed that NT-1 expression was primarily in neurons and astrocytes. Ischemia-induced infarction in the NT-1 hyperexpression group was attenuated in comparison to saline or AAV-GFP–treated groups (P<0.01). Similarly, neurological deficits were greatly improved in AAV–NT-1–treated mice compared with mice in saline or AAV-GFP–treated groups (P<0.05). In addition, angiogenesis was increased in AAV–NT-1–treated mice compared with the other 2 groups (P<0.05). In vivo synchrotron radiation microangiography 28 days after tMCAO revealed more branches in AAV–NT-1–treated mice than in other groups. Conclusions— AAV–NT-1 induced NT-1 hyperexpression before tMCAO reduced infarct size, enhanced neovascularization, and improved long-term functional recovery.


Cell Transplantation | 2014

Melatonin pretreatment improves the survival and function of transplanted mesenchymal stem cells after focal cerebral ischemia.

Yaohui Tang; Beibei Cai; Falei Yuan; Xiaosong He; Xiaojie Lin; Jixian Wang; Yongting Wang; Guo-Yuan Yang

Mesenchymal stem cell (MSC) transplantation has been shown to be beneficial in treating cerebral ischemia. However, such benefit is limited by the low survival of transplanted MSCs in an ischemic microenvironment. Previous studies showed that melatonin pretreatment can increase MSC survival in the ischemic kidney. However, whether it will improve MSC survival in cerebral ischemia is unknown. Our study examined the effect of melatonin pretreatment on MSCs under ischemia-related conditions in vitro and after transplantation into ischemic rat brain. Results showed that melatonin pretreatment greatly increased survival of MSCs in vitro and reduced their apoptosis after transplantation into ischemic brain. Melatonin-treated MSCs (MT-MSCs) further reduced brain infarction and improved neurobehavioral outcomes. Angiogenesis, neurogenesis, and the expression of vascular endothelial growth factor (VEGF) were greatly increased in the MT-MSC-treated rats. Melatonin treatment increased the level of p-ERK1/2 in MSCs, which can be blocked by the melatonin receptor antagonist luzindole. ERK phosphorylation inhibitor U0126 completely reversed the protective effects of melatonin, suggesting that melatonin improves MSC survival and function through activating the ERK1/2 signaling pathway. Thus, stem cells pretreated by melatonin may represent a feasible approach for improving the beneficial effects of stem cell therapy for cerebral ischemia.


Stroke | 2012

Effect of Suture Properties on Stability of Middle Cerebral Artery Occlusion Evaluated by Synchrotron Radiation Angiography

Yongjing Guan; Yongting Wang; Falei Yuan; Haiyan Lu; Yuqi Ren; Tiqiao Xiao; Kemin Chen; David A. Greenberg; Kunlin Jin; Guo-Yuan Yang

Background and Purpose— The intraluminal suture technique for producing middle cerebral artery occlusion in rodents is the most commonly used method for modeling focal cerebral ischemia associated with clinical ischemic stroke. Synchrotron radiation angiography may provide a novel solution to directly monitor the success of middle cerebral artery occlusion. Methods— Twenty adult Sprague-Dawley rats for middle cerebral artery occlusion models were prepared randomly with different suture head silicone coating. In vivo imaging was performed at beam line BL13W1, Shanghai Synchrotron Radiation Facility, Shanghai, China. Results— Silicone-coated suture was superior to uncoated suture for producing consistent brain infarction. Additionally, silicone coating length was an important variable controlling the extent of the ischemic lesion: infarcts affected predominantly the caudate–putamen with large variability (<2 mm), both the cortex and caudate–putamen (2–3.3 mm), and most of the hemisphere, including the hypothalamus (>3.3 mm). Conclusions— Synchrotron radiation angiography provides a useful tool to observe hemodynamic changes after middle cerebral artery occlusion, and the physical properties of suture are critical to the success of the middle cerebral artery occlusion model.


Journal of Neurotrauma | 2012

Optimizing Suture Middle Cerebral Artery Occlusion Model in C57BL/6 Mice Circumvents Posterior Communicating Artery Dysplasia

Falei Yuan; Yaohui Tang; Xiaojie Lin; Yan Xi; Yongjing Guan; Tiqiao Xiao; Jun Chen; Zhijun Zhang; Guo-Yuan Yang; Yongting Wang

The suture middle cerebral artery occlusion (MCAO) model is used worldwide in both academia and industry. However, the variable occurrence of dysplasia in posterior communicating arteries (PcomAs) induces high mortality and instability in permanent MCAO models, limiting the models application to transient focal ischemia. In particular, high mortality in intraluminal suture MCAO models is associated with the dysplasia of PcomAs in C57BL/6 mice. Optimization of silicone coating length is critical for reducing mortality and generating stable infarct in this model. The aim of our study is to reduce mortality and improve the reproducibility of the intraluminal suture MCAO model in C57BL/6 mice, which have high variation in PcomA dysplasia. Adult male C57BL/6 mice (n=38) underwent MCAO using sutures with various diameters and silicone coating lengths. The occlusion of cerebral vessels was examined by synchrotron radiation live angiography. The morphology of PcomAs was examined under a microscope after MICROFIL(®) infusion. Neurological outcome, infarct volume, and mortality were examined within 28 days. Optimizing the silicone coating on an 8-0 suture tip, we were able to reduce the model mortality to zero after permanent occlusion in C57BL/6 and produce stable brain infarct volume independent of the patency of PcomAs.


PLOS ONE | 2013

Surgery-Related Thrombosis Critically Affects the Brain Infarct Volume in Mice Following Transient Middle Cerebral Artery Occlusion

Xiaojie Lin; Peng Miao; Jixian Wang; Falei Yuan; Yongjing Guan; Yaohui Tang; Xiaosong He; Yongting Wang; Guo-Yuan Yang

Transient middle cerebral artery occlusion (tMCAO) model is widely used to mimic human focal ischemic stroke in order to study ischemia/reperfusion brain injury in rodents. In tMCAO model, intraluminal suture technique is widely used to achieve ischemia and reperfusion. However, variation of infarct volume in this model often requires large sample size, which hinders the progress of preclinical research. Our previous study demonstrated that infarct volume was related to the success of reperfusion although the reason remained unclear. The aim of present study is to explore the relationship between focal thrombus formation and model reproducibility with respect to infarct volume. We hypothesize that suture-induced thrombosis causes infarct volume variability due to insufficient reperfusion after suture withdrawal. Seventy-two adult male CD-1 mice underwent 90 minutes of tMCAO with or without intraperitoneal administration of heparin. Dynamic synchrotron radiation microangiography (SRA) and laser speckle contrast imaging (LSCI) were performed before and after tMCAO to observe the cerebral vascular morphology and to measure the cerebral blood flow in vivo. Infarct volume and neurological score were examined to evaluate severity of ischemic brain injury. We found that the rate of successful reperfusion was much higher in heparin-treated mice compared to that in heparin-free mice according to the result of SRA and LSCI at 1 and 3 hours after suture withdrawal (p<0.05). Pathological features and SRA revealed that thrombus formed in the internal carotid artery, middle cerebral artery or anterior cerebral artery, which blocked reperfusion following tMCAO. LSCI showed that cortical collateral circulation could be disturbed by thrombi. Our results demonstrated that suture-induced thrombosis was a critical element, which affects the success of reperfusion. Appropriate heparin management provides a useful approach for improving reproducibility of reperfusion model in mice.


Frontiers of Medicine in China | 2011

Overexpression of netrin-1 improves neurological outcomes in mice following transient middle cerebral artery occlusion

Haiyan Lu; Yongting Wang; Falei Yuan; Jianrong Liu; Lili Zeng; Guo-Yuan Yang

Netrin-1 (NT-1) is one of the axon-guiding molecules that are critical for neuronal development. Because of its structural homology to the endothelial mitogens, NT-1 may have similar effects on vascular network formation. NT-1 was shown to be able to stimulate the proliferation and migration of human cerebral endothelial cells in vitro and also promote focal neovascularization in adult brain in vivo. In the present study, we reported the delivery of NT-1 using an adeno-associated virus (AAV) vector (AAV-NT-1) into mouse brain followed by transient middle cerebral artery occlusion (tMCAO). We found that AAV vectors did not elicit a detectable inflammatory response, cell loss or neuronal damage after brain transduction. The level of NT-1 was increased in the AAV-NT-1-transduced tMCAO mice compared with the control mice. Furthermore, the neurobehavioral outcomes were significantly improved in AAV-NT-1-transduced mice compared with the control animals (P<0.05) 7 days after tMCAO. Our data suggests that NT-1 plays a neuronal function recovery role in ischemic brain and that NT-1 gene transfer might present a valuable approach to treat brain ischemic disorders.


PLOS ONE | 2017

Contribution of Vascular Cells to Neointimal Formation

Falei Yuan; Dong Wang; Kang Xu; Jixian Wang; Zhijun Zhang; Li Yang; Guo-Yuan Yang; Song Li

The de-differentiation and proliferation of smooth muscle cells (SMCs) are widely accepted as the major contributor to vascular remodeling. However, recent studies indicate that vascular stem cells (VSCs) also play an important role, but their relative contribution remains to be elucidated. In this study, we used genetic lineage tracing approach to further investigate the contribution of SMCs and VSCs to neointimal thickening in response to endothelium denudation injury or artery ligation. In vitro and in vivo analysis of MYH11-cre/Rosa-loxP-RFP mouse artery showed that SMCs proliferated at a much slower rate than non-SMCs. Upon denudation or ligation injury, two distinct types of neointima were identified: Type-I neointimal cells mainly involved SMCs, while Type II mainly involved non-SMCs. Using Sox10-cre/Rosa-loxP-LacZ mice, we found that Sox10+ cells were one of the cell sources in neointima. In addition, lineage tracing using Tie2-cre/Rosa-LoxP-RFP showed that endothelial cells also contributed to the neointimal formation, but rarely transdifferentiated into mesenchymal lineages. These results provide a novel insight into the contribution of vascular cells to neointima formation, and have significant impact on the development of more effective therapies that target specific vascular cell types.


Journal of Synchrotron Radiation | 2014

Collateral circulation prevents masticatory muscle impairment in rat middle cerebral artery occlusion model

Falei Yuan; Xiaojie Lin; Yongjing Guan; Zhihao Mu; Kemin Chen; Yongting Wang; Guo-Yuan Yang

The rat suture middle cerebral artery occlusion (MCAO) is a frequently used animal model for investigating the mechanisms of ischemic brain injury. During suture MCAO, transection of the external carotid artery (ECA) potentially restrains blood flow and impairs masticatory muscle and other ECA-supported territories, consequently influencing post-operation animal survival. This study was aimed at investigating the effect of ECA transection on the hemodynamic alterations using a novel synchrotron radiation (SR) angiography technique and magnetic resonance imaging in live animals. Fifteen male adult Sprague-Dawley rats were used in this study. Animals underwent MCAO, in which the ECA was transected. SR angiography was performed before and after MCAO. Rats then underwent magnetic resonance imaging (MRI) to detect the tissue lesion both intra- and extra-cranially. Animals with SR angiography without other manipulations were used as control. High-resolution cerebrovascular morphology was analyzed using a novel technique of SR angiography. The masticatory muscle lesion was further examined by hematoxylin and eosin staining. MRI and histological results showed that there was no masticatory muscle lesion at 1, 7 and 28 days following MCAO with ECA transection. In normal condition, the ECA and its branch external maxillary artery were clearly detected. Following ECA transection, the external maxillary artery was still observed and the blood supply appeared from the anastomotic branch from the pterygopalatine artery. SR angiography further revealed the inter-relationship of hemisphere extra- and intra-cranial vasculature in the rat following MCAO. Transection of the ECA did not impair masticatory muscles in rat suture MCAO. Interrupted blood flow could be compensated by the collateral circulation from the pterygopalatine artery.


6TH INTERNATIONAL CONFERENCE ON MEDICAL APPLICATIONS OF SYNCHROTRON RADIATION | 2010

Microangiography in Living Mice Using Synchrotron Radiation

Falei Yuan; Yongting Wang; Yongjing Guan; Haiyan Lu; Bohua Xie; Yaohui Tang; Honglan Xie; Guohao Du; Tiqiao Xiao; Guo-Yuan Yang

Traditionally, there are no methods available to detect the fine morphologic changes of cerebrovasculature in small living animals such as rats and mice. Newly developed synchrotron radiation microangiography can achieve a fine resolution of several micrometers and had provided us with a powerful tool to study the cerebral vasculature in small animals. The purpose of this study is to identify the morphology of cerebrovasculature especially the structure of Lenticulostriate arteries (LSAs) in living mice using the synchrotron radiation source at Shanghai Synchrotron Radiation Facility (SSRF) in Shanghai, China. Adult CD‐1 mice weighing 35–40 grams were anesthetized. Nonionic iodine (Omnipaque, 350 mg I /mL) was used as a contrast agent. The study was performed at the BL13W1 beam line at SSRF. The beam line was derived from a storage ring of electrons with an accelerated energy of 3.5 GeV and an average beam current of 200 mA. X‐ray energy of 33.3 keV was used to produce the highest contrast image. Images w...


Journal of Nanoparticle Research | 2014

Synthesis of nanostructured barium phosphate and its application in micro-computed tomography of mouse brain vessels in ex vivo

Bangshang Zhu; Falei Yuan; Xiaoya Yuan; Yang Bo; Yongting Wang; Guo-Yuan Yang; Gregor P. C. Drummen; Xinyuan Zhu

Micro-computed tomography (micro-CT) is a powerful tool for visualizing the vascular systems of tissues, organs, or entire small animals. Vascular contrast agents play a vital role in micro-CT imaging in order to obtain clear and high-quality images. In this study, a new kind of nanostructured barium phosphate was fabricated and used as a contrast agent for ex vivo micro-CT imaging of blood vessels in the mouse brain. Nanostructured barium phosphate was synthesized through a simple wet precipitation method using Ba(NO3)2, and (NH4)2HPO4 as starting materials. The physiochemical properties of barium phosphate were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and thermal analysis. Furthermore, the impact of the produced nanostructures on cell viability was evaluated via the MTT assay, which generally showed low to moderate cytotoxicity. Finally, the animal test images demonstrated that the use of nanostructured barium phosphate as a contrast agent in Micro-CT imaging produced sharp images with excellent contrast. Both major vessels and the microvasculature were clearly observable in the imaged mouse brain. Overall, the results indicate that nanostructured barium phosphate is a potential and useful vascular contrast agent for micro-CT imaging.

Collaboration


Dive into the Falei Yuan's collaboration.

Top Co-Authors

Avatar

Yongting Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Guo-Yuan Yang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yaohui Tang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaojie Lin

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Yongjing Guan

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Haiyan Lu

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Xiaosong He

Guangzhou Medical University

View shared research outputs
Top Co-Authors

Avatar

Jixian Wang

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Tiqiao Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhijun Zhang

Shanghai Jiao Tong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge