Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faruque Parvez is active.

Publication


Featured researches published by Faruque Parvez.


Environmental Health Perspectives | 2004

Water Manganese Exposure and Children's Intellectual Function in Araihazar, Bangladesh

Gail A. Wasserman; Xinhua Liu; Faruque Parvez; Habibul Ahsan; Pam Factor-Litvak; Alexander van Geen; Vesna Slavkovich; Nancy J. Lolacono; Zhongqi Cheng; Iftikhar Hussain; Hassina Momotaj; Joseph Graziano

Exposure to manganese via inhalation has long been known to elicit neurotoxicity in adults, but little is known about possible consequences of exposure via drinking water. In this study, we report results of a cross-sectional investigation of intellectual function in 142 10-year-old children in Araihazar, Bangladesh, who had been consuming tube-well water with an average concentration of 793 μg Mn/L and 3 μg arsenic/L. Children and mothers came to our field clinic, where children received a medical examination in which weight, height, and head circumference were measured. Children’s intellectual function was assessed on tests drawn from the Wechsler Intelligence Scale for Children, version III, by summing weighted items across domains to create Verbal, Performance, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and creatinine and were asked to provide blood samples for measuring blood lead, As, Mn, and hemoglobin concentrations. After adjustment for sociodemographic covariates, water Mn was associated with reduced Full-Scale, Performance, and Verbal raw scores, in a dose–response fashion; the low level of As in water had no effect. In the United States, roughly 6% of domestic household wells have Mn concentrations that exceed 300 μg Mn/L, the current U.S. Environmental Protection Agency lifetime health advisory level. We conclude that in both Bangladesh and the United States, some children are at risk for Mn-induced neurotoxicity.


The Lancet | 2010

Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study

Maria Argos; Tara Kalra; Paul J. Rathouz; Yu Chen; Brandon L. Pierce; Faruque Parvez; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Vesna Slavkovich; Alexander van Geen; Joseph H. Graziano; Habibul Ahsan

BACKGROUND Millions of people worldwide are chronically exposed to arsenic through drinking water, including 35-77 million people in Bangladesh. The association between arsenic exposure and mortality rate has not been prospectively investigated by use of individual-level data. We therefore prospectively assessed whether chronic and recent changes in arsenic exposure are associated with all-cause and chronic-disease mortalities in a Bangladeshi population. METHODS In the prospective cohort Health Effects of Arsenic Longitudinal Study (HEALS), trained physicians unaware of arsenic exposure interviewed in person and clinically assessed 11 746 population-based participants (aged 18-75 years) from Araihazar, Bangladesh. Participants were recruited from October, 2000, to May, 2002, and followed-up biennially. Data for mortality rates were available throughout February, 2009. We used Cox proportional hazards model to estimate hazard ratios (HRs) of mortality, with adjustment for potential confounders, at different doses of arsenic exposure. FINDINGS 407 deaths were ascertained between October, 2000, and February, 2009. Multivariate adjusted HRs for all-cause mortality in a comparison of arsenic at concentrations of 10.1-50.0 microg/L, 50.1-150.0 microg/L, and 150.1-864.0 microg/L with at least 10.0 microg/L in well water were 1.34 (95% CI 0.99-1.82), 1.09 (0.81-1.47), and 1.68 (1.26-2.23), respectively. Results were similar with daily arsenic dose and total arsenic concentration in urine. Recent change in exposure, measurement of total arsenic concentrations in urine repeated biennially, did not have much effect on the mortality rate. INTERPRETATION Chronic arsenic exposure through drinking water was associated with an increase in the mortality rate. Follow-up data from this cohort will be used to assess the long-term effects of arsenic exposure and how they might be affected by changes in exposure. However, solutions and resources are urgently needed to mitigate the resulting health effects of arsenic exposure. FUNDING US National Institutes of Health.


BMJ | 2011

Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study

Yu Chen; Joseph H. Graziano; Faruque Parvez; Mengling Liu; Vesna Slavkovich; Tara Kalra; Maria Argos; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Diane Levy; Alexander van Geen; Habibul Ahsan

Objective To evaluate the association between arsenic exposure and mortality from cardiovascular disease and to assess whether cigarette smoking influences the association. Design Prospective cohort study with arsenic exposure measured in drinking water from wells and urine. Setting General population in Araihazar, Bangladesh. Participants 11 746 men and women who provided urine samples in 2000 and were followed up for an average of 6.6 years. Main outcome measure Death from cardiovascular disease. Results 198 people died from diseases of circulatory system, accounting for 43% of total mortality in the population. The mortality rate for cardiovascular disease was 214.3 per 100 000 person years in people drinking water containing <12.0 µg/L arsenic, compared with 271.1 per 100 000 person years in people drinking water with ≥12.0 µg/L arsenic. There was a dose-response relation between exposure to arsenic in well water assessed at baseline and mortality from ischaemic heart disease and other heart disease; the hazard ratios in increasing quarters of arsenic concentration in well water (0.1-12.0, 12.1-62.0, 62.1-148.0, and 148.1-864.0 µg/L) were 1.00 (reference), 1.22 (0.65 to 2.32), 1.35 (0.71 to 2.57), and 1.92 (1.07 to 3.43) (P=0.0019 for trend), respectively, after adjustment for potential confounders including age, sex, smoking status, educational attainment, body mass index (BMI), and changes in urinary arsenic concentration since baseline. Similar associations were observed when baseline total urinary arsenic was used as the exposure variable and for mortality from ischaemic heart disease specifically. The data indicate a significant synergistic interaction between arsenic exposure and cigarette smoking in mortality from ischaemic heart disease and other heart disease. In particular, the hazard ratio for the joint effect of a moderate level of arsenic exposure (middle third of well arsenic concentration 25.3-114.0 µg/L, mean 63.5 µg/L) and cigarette smoking on mortality from heart disease was greater than the sum of the hazard ratios associated with their individual effect (relative excess risk for interaction 1.56, 0.05 to 3.14; P=0.010). Conclusions Exposure to arsenic in drinking water is adversely associated with mortality from heart disease, especially among smokers.


Environmental Health Perspectives | 2006

Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh.

Gail A. Wasserman; Xinhua Liu; Faruque Parvez; Habibul Ahsan; Pam Factor-Litvak; Jennie Kline; van Geen A; Slavkovich; Loiacono Nj; Diane Levy; Zhongqi Cheng; Joseph H. Graziano

Background We recently reported results of a cross-sectional investigation of intellectual function in 10-year-olds in Bangladesh, who had been exposed to arsenic from drinking water in their home wells. Objectives We present results of a similar investigation of 301 randomly selected 6-year-olds whose parents participated in our ongoing prospective study of the health effects of As exposure in 12,000 residents of Araihazar, Bangladesh. Methods Water As and manganese concentrations of tube wells at each home were obtained by surveying all study region wells. Children and mothers were first visited at home, where the quality of home stimulation was measured, and then seen in our field clinic, where children received a medical examination wherein weight, height, and head circumference were assessed. We assessed children’s intellectual function using subtests drawn from the Wechsler Preschool and Primary Scale of Intelligence, version III, by summing weighted items across domains to create Verbal, Performance, Processing Speed, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and were asked to provide blood samples for blood lead measurements. Results Exposure to As from drinking water was associated with reduced intellectual function before and after adjusting for water Mn, for blood lead levels, and for sociodemographic features known to contribute to intellectual function. With covariate adjustment, water As remained significantly negatively associated with both Performance and Processing Speed raw scores; associations were less strong than in our previously studied 10-year-olds. Conclusion This second cross-sectional study of As exposure expands our concerns about As neurotoxicity to a younger age group.


Environmental Health Perspectives | 2005

Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh.

Mary V. Gamble; Xinhua Liu; Habibul Ahsan; J. Richard Pilsner; Vesna Ilievski; Vesna Slavkovich; Faruque Parvez; Diane Levy; Pam Factor-Litvak; Joseph H. Graziano

Chronic exposure to arsenic is occurring throughout South and East Asia due to groundwater contamination of well water. Variability in susceptibility to arsenic toxicity may be related to nutritional status. Arsenic is methylated to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) via one-carbon metabolism, a biochemical pathway that is dependent on folate. The majority of one-carbon metabolism methylation reactions are devoted to biosynthesis of creatine, the precursor of creatinine. Our objectives of this cross-sectional study were to characterize the relationships among folate, cobalamin, homocysteine, and arsenic metabolism in Bangladeshi adults. Water arsenic, urinary arsenic, urinary creatinine, plasma folate, cobalamin, and homocysteine were assessed in 1,650 adults; urinary arsenic metabolites were analyzed for a subset of 300 individuals. The percentage of DMA in urine was positively associated with plasma folate (r = 0.14, p = 0.02) and negatively associated with total homocysteine (tHcys; r = −0.14, p = 0.01). Conversely, percent MMA was negatively associated with folate (r = −0.12, p = 0.04) and positively associated with tHcys (r = 0.21, p = 0.0002); percent inorganic arsenic (InAs) was negatively associated with folate (r = −0.12, p = 0.03). Urinary creatinine was positively correlated with percent DMA (r = 0.40 for males, p < 0.0001; 0.25 for females, p = 0.001), and with percent InAs (r = −0.45 for males, p < 0.0001; −0.20 for females, p = 0.01). Collectively, these data suggest that folate, tHcys, and other factors involved in one-carbon metabolism influence arsenic methylation. This may be particularly relevant in Bangladesh, where the prevalence of hyperhomocysteinemia is extremely high.


Journal of Exposure Science and Environmental Epidemiology | 2006

Health Effects of Arsenic Longitudinal Study (HEALS): Description of a multidisciplinary epidemiologic investigation

Habibul Ahsan; Yu Chen; Faruque Parvez; Maria Argos; Hassina Momotaj; Diane Levy; Alexander van Geen; Geoffrey R. Howe; Joseph H. Graziano

Health Effects of Arsenic Longitudinal Study (HEALS), a multidisciplinary and large prospective cohort study in Araihazar, Bangladesh, was established to evaluate the effects of full-dose range arsenic (As) exposure on various health outcomes, including premalignant and malignant skin tumors, total mortality, pregnancy outcomes, and childrens cognitive development. In this paper, we provide descriptions of the study methods including study design, study population, data collection, response rates, and exposure and outcome assessments. We also present characteristics of the study participants including the distribution of exposure and the prevalence of skin lesion at baseline recruitment. A total of 11,746 married men and women between 18 and 75 years of age participated in the study at baseline (a response rate of 98%) and completed a full questionnaire interview that included a food frequency questionnaire, with a response rate of 98%. Among the 98% of the participants who completed the clinical evaluation, over 90% provided blood samples and spot urine samples. Higher educational status, male gender, and presence of premalignant skin lesions were associated with an increased likelihood of providing blood and urine samples. Older participants were less likely to donate a blood sample. About one-third of the participants consumed water from a well with As concentration in each of three groups: >100 μg/l, 25–100 μg/l, and <25 μg/l. Average urinary As concentrations were 140 and 136 μg/l for males and females, respectively. HEALS has several unique features, including a prospective study design, comprehensive assessments of both past and future changes in As exposure at the individual level, a large repository of biological samples, and a full dose range of As exposures in the study population. HEALS is a valuable resource for examining novel research questions on the health effects of As exposure.


Science of The Total Environment | 2012

One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countries.

Jochen Bundschuh; Marta I. Litter; Faruque Parvez; Gabriela Roman-Ross; Hugo Nicolli; Jiin-Shuh Jean; Chen-Wuing Liu; Dina L. Lopez; María Aurora Armienta; Luiz Roberto Guimarães Guilherme; Alina Gomez Cuevas; Lorena Cornejo; Luis Cumbal; Regla Toujaguez

The global impact on public health of elevated arsenic (As) in water supplies is highlighted by an increasing number of countries worldwide reporting high As concentrations in drinking water. In Latin America, the problem of As contamination in water is known in 14 out of 20 countries: Argentina, Bolivia, Brazil, Chile, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Peru and Uruguay. Considering the 10 μg/L limit for As in drinking water established by international and several national agencies, the number of exposed people is estimated to be about 14 million. Health effects of As exposure were identified for the first time already in the 1910s in Bellville (Córdoba province, Argentina). Nevertheless, contamination of As in waters has been detected in 10 Latin American countries only within the last 10 to 15 years. Arsenic is mobilized predominantly from young volcanic rocks and their weathering products. In alluvial aquifers, which are water sources frequently used for water supply, desorption of As from metal oxyhydroxides at high pH (>8) is the predominant mobility control; redox conditions are moderate reducing to oxidizing and As(V) is the predominant species. In the Andes, the Middle American cordillera and the Transmexican Volcanic Belt, oxidation of sulfide minerals is the primary As mobilization process. Rivers that originate in the Andean mountains, transport As to more densely populated areas in the lowlands (e.g. Rímac river in Peru, Pilcomayo river in Bolivia/Argentina/Paraguay). In many parts of Latin America, As often occurs together with F and B; in the Chaco-Pampean plain As is found additionally with V, Mo and U whereas in areas with sulfide ore deposits As often occurs together with heavy metals. These co-occurrences and the anthropogenic activities in mining areas that enhance the mobilization of As and other pollutants make more dramatic the environmental problem.


Toxicology and Applied Pharmacology | 2009

Arsenic exposure at low-to-moderate levels and skin lesions, arsenic metabolism, neurological functions, and biomarkers for respiratory and cardiovascular diseases: Review of recent findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

Yu Chen; Faruque Parvez; Mary V. Gamble; Tariqul Islam; Alauddin Ahmed; Maria Argos; Joseph H. Graziano; Habibul Ahsan

The contamination of groundwater by arsenic in Bangladesh is a major public health concern affecting 35-75 million people. Although it is evident that high levels (>300 microg/L) of arsenic exposure from drinking water are related to adverse health outcomes, health effects of arsenic exposure at low-to-moderate levels (10-300 microg/L) are not well understood. We established the Health Effects of Arsenic Longitudinal Study (HEALS) with more than 20,000 men and women in Araihazar, Bangladesh, to prospectively investigate the health effects of arsenic predominantly at low-to-moderate levels (0.1 to 864 microg/L, mean 99 microg/L) of arsenic exposure. Findings to date suggest adverse effects of low-to-moderate levels of arsenic exposure on the risk of pre-malignant skin lesions, high blood pressure, neurological dysfunctions, and all-cause and chronic disease mortality. In addition, the data also indicate that the risk of skin lesion due to arsenic exposure is modifiable by nutritional factors, such as folate and selenium status, lifestyle factors, including cigarette smoking and body mass index, and genetic polymorphisms in genes related to arsenic metabolism. The analyses of biomarkers for respiratory and cardiovascular functions support that there may be adverse effects of arsenic on these outcomes and call for confirmation in large studies. A unique strength of the HEALS is the availability of outcome data collected prospectively and data on detailed individual-level arsenic exposure estimated using water, blood and repeated urine samples. Future prospective analyses of clinical endpoints and related host susceptibility will enhance our knowledge on the health effects of low-to-moderate levels of arsenic exposure, elucidate disease mechanisms, and give directions for prevention.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Arsenic Metabolism, Genetic Susceptibility, and Risk of Premalignant Skin Lesions in Bangladesh

Habibul Ahsan; Yu Chen; Muhammad G. Kibriya; Vesna Slavkovich; Faruque Parvez; Farzana Jasmine; Mary V. Gamble; Joseph H. Graziano

We conducted a case-control study to investigate interindividual variability in susceptibility to health effects of inorganic arsenic due to arsenic metabolism efficiency, genetic factors, and their interaction. A total of 594 cases of arsenic-induced skin lesions and 1,041 controls was selected from baseline participants in a large prospective cohort study in Bangladesh. Adjusted odds ratios (OR) for skin lesions were estimated in relation to the polymorphisms in the glutathione S-transferase ω1 and methylenetetrahydrofolate reductase genes, the percentage of monomethylarsonous acid (%MMA) and dimethylarsinic acid (%DMA) in urine, and the ratios of MMA to inorganic arsenic and DMA to MMA. Water arsenic concentration was positively associated with %MMA and inversely associated with %DMA. The dose-response relationship of risk of skin lesion with %MMA was more apparent than those with other methylation indices; the ORs for skin lesions in relation to increasing %MMA quartiles were 1.00 (reference), 1.33 [95% confidence interval (95% CI), 0.92-1.93], 1.68 (95% CI, 1.17-2.42), and 1.57 (95% CI, 1.10-2.26; P for trend = 0.01). The ORs for skin lesions in relation to the methylenetetrahydrofolate reductase 677TT/1298AA and 677CT/1298AA diplotypes (compared with 677CC/1298CC diplotype) were 1.66 (95% CI, 1.00-2.77) and 1.77 (95% CI, 0.61-5.14), respectively. The OR for skin lesions in relation to the glutathione S-transferase ω1 diplotype containing all at-risk alleles was 3.91 (95% CI, 1.03-14.79). Analysis of joint effects of genotypes/diplotypes with water arsenic concentration and urinary %MMA suggests additivity of these factors. The findings suggest that arsenic metabolism, particularly the conversion of MMA to DMA, may be saturable and that differences in urinary arsenic metabolites, genetic factors related to arsenic metabolism, and their joint distributions modulate arsenic toxicity. (Cancer Epidemiol Biomarkers Prev 2007;16(6):1270–8)


Journal of Occupational and Environmental Medicine | 2000

Associations between drinking water and urinary arsenic levels and skin lesions in Bangladesh.

Habibul Ahsan; Mary Perrin; Atiqur Rahman; Faruque Parvez; Martin Stute; Yan Zheng; Abul Hasnat Milton; Paul W. Brandt-Rauf; Alexander van Geen; Joseph H. Graziano

The present study examined the associations between drinking water and urinary arsenic levels and skin lesions among 167 residents of three contiguous villages in Bangladesh. Thirty-six (21.6%) had skin lesions (melanosis, hyperkeratosis, or both), of which 13 (36.1%) occurred in subjects who were currently drinking water containing concentrations of arsenic <50 &mgr;g/L. The risk for skin lesions in relation to the exposure estimates based on urinary arsenic was elevated more than 3-fold, with the odds ratios for the highest versus the lowest quartiles being 3.6 (95% confidence interval, 1.2 to 12.1) for urinary total arsenic and 3.2 (95% confidence interval, 1.1 to 10.0) for urinary creatinine-adjusted total arsenic. The risks for skin lesions in relation to the exposure estimates based on arsenic in drinking water were less strongly elevated, with the odds ratios for the highest versus the lowest quartiles of exposure being 1.7 (95% confidence interval, 0.6 to 5.1) for drinking-water arsenic and 2.3 for cumulative arsenic index. The study suggests that arsenic exposure is associated with skin lesions in the Bangladesh population and that urinary arsenic may be a stronger predictor of skin lesions than arsenic in drinking water in this population.

Collaboration


Dive into the Faruque Parvez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Argos

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge