Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vesna Slavkovich is active.

Publication


Featured researches published by Vesna Slavkovich.


Environmental Health Perspectives | 2004

Water Manganese Exposure and Children's Intellectual Function in Araihazar, Bangladesh

Gail A. Wasserman; Xinhua Liu; Faruque Parvez; Habibul Ahsan; Pam Factor-Litvak; Alexander van Geen; Vesna Slavkovich; Nancy J. Lolacono; Zhongqi Cheng; Iftikhar Hussain; Hassina Momotaj; Joseph Graziano

Exposure to manganese via inhalation has long been known to elicit neurotoxicity in adults, but little is known about possible consequences of exposure via drinking water. In this study, we report results of a cross-sectional investigation of intellectual function in 142 10-year-old children in Araihazar, Bangladesh, who had been consuming tube-well water with an average concentration of 793 μg Mn/L and 3 μg arsenic/L. Children and mothers came to our field clinic, where children received a medical examination in which weight, height, and head circumference were measured. Children’s intellectual function was assessed on tests drawn from the Wechsler Intelligence Scale for Children, version III, by summing weighted items across domains to create Verbal, Performance, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and creatinine and were asked to provide blood samples for measuring blood lead, As, Mn, and hemoglobin concentrations. After adjustment for sociodemographic covariates, water Mn was associated with reduced Full-Scale, Performance, and Verbal raw scores, in a dose–response fashion; the low level of As in water had no effect. In the United States, roughly 6% of domestic household wells have Mn concentrations that exceed 300 μg Mn/L, the current U.S. Environmental Protection Agency lifetime health advisory level. We conclude that in both Bangladesh and the United States, some children are at risk for Mn-induced neurotoxicity.


The Lancet | 2010

Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study

Maria Argos; Tara Kalra; Paul J. Rathouz; Yu Chen; Brandon L. Pierce; Faruque Parvez; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Vesna Slavkovich; Alexander van Geen; Joseph H. Graziano; Habibul Ahsan

BACKGROUND Millions of people worldwide are chronically exposed to arsenic through drinking water, including 35-77 million people in Bangladesh. The association between arsenic exposure and mortality rate has not been prospectively investigated by use of individual-level data. We therefore prospectively assessed whether chronic and recent changes in arsenic exposure are associated with all-cause and chronic-disease mortalities in a Bangladeshi population. METHODS In the prospective cohort Health Effects of Arsenic Longitudinal Study (HEALS), trained physicians unaware of arsenic exposure interviewed in person and clinically assessed 11 746 population-based participants (aged 18-75 years) from Araihazar, Bangladesh. Participants were recruited from October, 2000, to May, 2002, and followed-up biennially. Data for mortality rates were available throughout February, 2009. We used Cox proportional hazards model to estimate hazard ratios (HRs) of mortality, with adjustment for potential confounders, at different doses of arsenic exposure. FINDINGS 407 deaths were ascertained between October, 2000, and February, 2009. Multivariate adjusted HRs for all-cause mortality in a comparison of arsenic at concentrations of 10.1-50.0 microg/L, 50.1-150.0 microg/L, and 150.1-864.0 microg/L with at least 10.0 microg/L in well water were 1.34 (95% CI 0.99-1.82), 1.09 (0.81-1.47), and 1.68 (1.26-2.23), respectively. Results were similar with daily arsenic dose and total arsenic concentration in urine. Recent change in exposure, measurement of total arsenic concentrations in urine repeated biennially, did not have much effect on the mortality rate. INTERPRETATION Chronic arsenic exposure through drinking water was associated with an increase in the mortality rate. Follow-up data from this cohort will be used to assess the long-term effects of arsenic exposure and how they might be affected by changes in exposure. However, solutions and resources are urgently needed to mitigate the resulting health effects of arsenic exposure. FUNDING US National Institutes of Health.


BMJ | 2011

Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study

Yu Chen; Joseph H. Graziano; Faruque Parvez; Mengling Liu; Vesna Slavkovich; Tara Kalra; Maria Argos; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Diane Levy; Alexander van Geen; Habibul Ahsan

Objective To evaluate the association between arsenic exposure and mortality from cardiovascular disease and to assess whether cigarette smoking influences the association. Design Prospective cohort study with arsenic exposure measured in drinking water from wells and urine. Setting General population in Araihazar, Bangladesh. Participants 11 746 men and women who provided urine samples in 2000 and were followed up for an average of 6.6 years. Main outcome measure Death from cardiovascular disease. Results 198 people died from diseases of circulatory system, accounting for 43% of total mortality in the population. The mortality rate for cardiovascular disease was 214.3 per 100 000 person years in people drinking water containing <12.0 µg/L arsenic, compared with 271.1 per 100 000 person years in people drinking water with ≥12.0 µg/L arsenic. There was a dose-response relation between exposure to arsenic in well water assessed at baseline and mortality from ischaemic heart disease and other heart disease; the hazard ratios in increasing quarters of arsenic concentration in well water (0.1-12.0, 12.1-62.0, 62.1-148.0, and 148.1-864.0 µg/L) were 1.00 (reference), 1.22 (0.65 to 2.32), 1.35 (0.71 to 2.57), and 1.92 (1.07 to 3.43) (P=0.0019 for trend), respectively, after adjustment for potential confounders including age, sex, smoking status, educational attainment, body mass index (BMI), and changes in urinary arsenic concentration since baseline. Similar associations were observed when baseline total urinary arsenic was used as the exposure variable and for mortality from ischaemic heart disease specifically. The data indicate a significant synergistic interaction between arsenic exposure and cigarette smoking in mortality from ischaemic heart disease and other heart disease. In particular, the hazard ratio for the joint effect of a moderate level of arsenic exposure (middle third of well arsenic concentration 25.3-114.0 µg/L, mean 63.5 µg/L) and cigarette smoking on mortality from heart disease was greater than the sum of the hazard ratios associated with their individual effect (relative excess risk for interaction 1.56, 0.05 to 3.14; P=0.010). Conclusions Exposure to arsenic in drinking water is adversely associated with mortality from heart disease, especially among smokers.


Environmental Health Perspectives | 2005

Folate, homocysteine, and arsenic metabolism in arsenic-exposed individuals in Bangladesh.

Mary V. Gamble; Xinhua Liu; Habibul Ahsan; J. Richard Pilsner; Vesna Ilievski; Vesna Slavkovich; Faruque Parvez; Diane Levy; Pam Factor-Litvak; Joseph H. Graziano

Chronic exposure to arsenic is occurring throughout South and East Asia due to groundwater contamination of well water. Variability in susceptibility to arsenic toxicity may be related to nutritional status. Arsenic is methylated to monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) via one-carbon metabolism, a biochemical pathway that is dependent on folate. The majority of one-carbon metabolism methylation reactions are devoted to biosynthesis of creatine, the precursor of creatinine. Our objectives of this cross-sectional study were to characterize the relationships among folate, cobalamin, homocysteine, and arsenic metabolism in Bangladeshi adults. Water arsenic, urinary arsenic, urinary creatinine, plasma folate, cobalamin, and homocysteine were assessed in 1,650 adults; urinary arsenic metabolites were analyzed for a subset of 300 individuals. The percentage of DMA in urine was positively associated with plasma folate (r = 0.14, p = 0.02) and negatively associated with total homocysteine (tHcys; r = −0.14, p = 0.01). Conversely, percent MMA was negatively associated with folate (r = −0.12, p = 0.04) and positively associated with tHcys (r = 0.21, p = 0.0002); percent inorganic arsenic (InAs) was negatively associated with folate (r = −0.12, p = 0.03). Urinary creatinine was positively correlated with percent DMA (r = 0.40 for males, p < 0.0001; 0.25 for females, p = 0.001), and with percent InAs (r = −0.45 for males, p < 0.0001; −0.20 for females, p = 0.01). Collectively, these data suggest that folate, tHcys, and other factors involved in one-carbon metabolism influence arsenic methylation. This may be particularly relevant in Bangladesh, where the prevalence of hyperhomocysteinemia is extremely high.


Cancer Epidemiology, Biomarkers & Prevention | 2007

Arsenic Metabolism, Genetic Susceptibility, and Risk of Premalignant Skin Lesions in Bangladesh

Habibul Ahsan; Yu Chen; Muhammad G. Kibriya; Vesna Slavkovich; Faruque Parvez; Farzana Jasmine; Mary V. Gamble; Joseph H. Graziano

We conducted a case-control study to investigate interindividual variability in susceptibility to health effects of inorganic arsenic due to arsenic metabolism efficiency, genetic factors, and their interaction. A total of 594 cases of arsenic-induced skin lesions and 1,041 controls was selected from baseline participants in a large prospective cohort study in Bangladesh. Adjusted odds ratios (OR) for skin lesions were estimated in relation to the polymorphisms in the glutathione S-transferase ω1 and methylenetetrahydrofolate reductase genes, the percentage of monomethylarsonous acid (%MMA) and dimethylarsinic acid (%DMA) in urine, and the ratios of MMA to inorganic arsenic and DMA to MMA. Water arsenic concentration was positively associated with %MMA and inversely associated with %DMA. The dose-response relationship of risk of skin lesion with %MMA was more apparent than those with other methylation indices; the ORs for skin lesions in relation to increasing %MMA quartiles were 1.00 (reference), 1.33 [95% confidence interval (95% CI), 0.92-1.93], 1.68 (95% CI, 1.17-2.42), and 1.57 (95% CI, 1.10-2.26; P for trend = 0.01). The ORs for skin lesions in relation to the methylenetetrahydrofolate reductase 677TT/1298AA and 677CT/1298AA diplotypes (compared with 677CC/1298CC diplotype) were 1.66 (95% CI, 1.00-2.77) and 1.77 (95% CI, 0.61-5.14), respectively. The OR for skin lesions in relation to the glutathione S-transferase ω1 diplotype containing all at-risk alleles was 3.91 (95% CI, 1.03-14.79). Analysis of joint effects of genotypes/diplotypes with water arsenic concentration and urinary %MMA suggests additivity of these factors. The findings suggest that arsenic metabolism, particularly the conversion of MMA to DMA, may be saturable and that differences in urinary arsenic metabolites, genetic factors related to arsenic metabolism, and their joint distributions modulate arsenic toxicity. (Cancer Epidemiol Biomarkers Prev 2007;16(6):1270–8)


Neurotoxicology | 2011

Arsenic and manganese exposure and children's intellectual function

Gail A. Wasserman; Xinhua Liu; Faruque Parvez; Pam Factor-Litvak; Habibul Ahsan; Diane Levy; Jennie Kline; Alexander van Geen; Jacob L. Mey; Vesna Slavkovich; Abu B. Siddique; Tariqul Islam; Joseph H. Graziano

Recently, epidemiologic studies of developmental neurotoxicology have been challenged to increase focus on co-exposure to multiple toxicants. Earlier reports, including our own work in Bangladesh, have demonstrated independent associations between neurobehavioral function and exposure to both arsenic (As) and manganese (Mn) in school-aged children. Our earlier studies, however, were not designed to examine possible interactive effects of exposure to both As and Mn. To allow investigation of possible synergistic impact of simultaneous exposures, we recruited a new sample of 299 8-11 year old children, stratified by design on As (above and below 10 μg/L) and Mn (above and below 500 μg/L) concentrations of household wells. When adjusted only for each other, both As and Mn in whole blood (BAs; BMn) were significantly negatively related to most WISC-IV subscale scores. With further adjustment for socio-demographic features and ferritin, BMn remained significantly associated with reduced Perceptual Reasoning and Working Memory scores; associations for BAs, and for other subscales, were expectably negative, significantly for Verbal Comprehension. Urinary As (per gram creatinine) was significantly negatively associated with Verbal Comprehension scores, even with adjustment for BMn and other contributors. Mn by As interactions were not significant in adjusted or unadjusted models (all ps>0.25). Findings are consistent with other reports documenting adverse impact of both As and Mn exposure on child developmental outcomes, although associations appear muted at these relatively low exposure levels.


Environmental Health Perspectives | 2009

Folate Deficiency, Hyperhomocysteinemia, Low Urinary Creatinine, and Hypomethylation of Leukocyte DNA Are Risk Factors for Arsenic-Induced Skin Lesions

J. Richard Pilsner; Xinhua Liu; Habibul Ahsan; Vesna Ilievski; Vesna Slavkovich; Diane Levy; Pam Factor-Litvak; Joseph H. Graziano; Mary V. Gamble

Background Arsenic methylation relies on folate-dependent one-carbon metabolism and facilitates urinary As elimination. Clinical manifestations of As toxicity vary considerably among individuals and populations, and poor methylation capacity is thought to confer greater susceptibility. Objective After determining that folate deficiency, hyperhomocysteinemia, and low urinary creatinine are associated with reduced As methylation, and that As exposure is associated with increased genomic methylation of leukocyte DNA, we asked whether these factors are associated with As-induced skin lesion risk among Bangladeshi adults. Methods We conducted a nested case–control study of 274 cases who developed lesions 2 years after recruitment, and 274 controls matched to cases for sex, age, and water As. Results The odds ratios and 95% confidence intervals (CIs) for development of skin lesions for participants who had low folate (< 9 nmol/L), hyperhomocysteinemia (men, > 11.4 μmol/L; women, > 10.4 μmol/L), or hypomethylated leukocyte DNA at recruitment (< median) were 1.8 (95% CI, 1.1–2.9), 1.7 (95% CI, 1.1–2.6), and 1.8 (95% CI, 1.2–2.8), respectively. Compared with the subjects in the first quartile, those in the third and fourth quartiles for urinary creatinine had a 0.4-fold decrease in the odds of skin lesions (p < 0.01). Conclusions These results suggest that folate deficiency, hyperhomocysteinemia, and low urinary creatinine, each associated with decreased As methylation, are risk factors for As-induced skin lesions. The increased DNA methylation associated with As exposure previously observed, and confirmed among controls in this study, may be an adaptive change because hypomethylation of leukocyte DNA is associated with increased risk for skin lesions.


Brain Research | 1999

Alteration of iron homeostasis following chronic exposure to manganese in rats

Wei Zheng; Qiuqu Zhao; Vesna Slavkovich; Michael Aschner; Joseph H. Graziano

Recent studies suggest that manganese-induced neurodegenerative toxicity may be partly due to its action on aconitase, which participates in cellular iron regulation and mitochondrial energy production. This study was performed to investigate whether chronic manganese exposure in rats influenced the homeostasis of iron in blood and cerebrospinal fluid (CSF). Groups of 8-10 rats received intraperitoneal injections of MnCl2 at the dose of 6 mg Mn/kg/day or equal volume of saline for 30 days. Concentrations of manganese and iron in plasma and CSF were determined by atomic absorption spectrophotometry. Rats exposed to manganese showed a greatly elevated manganese concentration in both plasma and CSF. The magnitude of increase in CSF manganese (11-fold) was equivalent to that of plasma (10-fold). Chronic manganese exposure resulted in a 32% decrease in plasma iron (p<0.01) and no changes in plasma total iron binding capacity (TIBC). However, it increased CSF iron by 3-fold as compared to the controls (p<0.01). Northern blot analyses of whole brain homogenates revealed a 34% increase in the expression of glutamine synthetase (p<0.05) with unchanged metallothionein-I in manganese-intoxicated rats. When the cultured choroidal epithelial cells derived from rat choroid plexus were incubated with MnCl2 (100 microM) for four days, the expression of transferrin receptor mRNA appeared to exceed by 50% that of control (p<0.002). The results indicate that chronic manganese exposure alters iron homeostasis possibly by expediting unidirectional influx of iron from the systemic circulation to cerebral compartment. The action appears likely to be mediated by manganese-facilitated iron transport at brain barrier systems.


The Journal of Pediatrics | 1992

Independent effects of lead exposure and iron deficiency anemia on developmental outcome at age 2 years

Gail A. Wasserman; Joseph H. Graziano; Pam Factor-Litvak; D. Popovac; N. Morina; Aida Musabegovic; N. Vrenezi; S. Capuni-Paracka; V. Lekic; E. Preteni-Redjepi; S. Hadzialjevic; Vesna Slavkovich; Jennie Kline; P. Shrout; Z. Stein

For a prospective study of lead exposure, iron status, and infant development, we recruited infants living in a smelter town and a non-lead-exposed town in Kosovo, Yugoslavia. Among 392 infants assessed at age 2 years, the mean Mental Development Index (MDI), Bayley Scales of Infant Development, was 105.2. At age 2 years, geometric mean blood lead concentrations were 35.5 and 8.4 micrograms/dl, respectively, among infants from the exposed and nonexposed towns. After controlling for variables associated with MDI, we found significant independent associations for both blood lead and hemoglobin concentrations. For example, a rise in blood lead concentration at age 2 years from 10 to 30 micrograms/dl was associated with an estimated 2.5 point decrement in MDI (p = 0.03); statistically nonsignificant decrements were associated with blood lead levels measured at birth and at 6, 12, and 18 months of age. A decrease in hemoglobin concentration at 18 months of age from 12 to 10 gm/dl was associated with an estimated 3.4 point decrement in MDI (p = 0.02); the latter association was present in both towns, suggesting that it was due to iron deficiency anemia independent of lead exposure. The findings suggest that the brain is vulnerable to the effects of both lead exposure and anemia before 2 years of age. On a global basis, the developmental consequences of anemia may exceed those of lead exposure.


Neurotoxicology | 2012

Manganese exposure from drinking water and children's academic achievement

Khalid Khan; Gail A. Wasserman; Xinhua Liu; Ershad Ahmed; Faruque Parvez; Vesna Slavkovich; Diane Levy; Jacob L. Mey; Alexander van Geen; Joseph H. Graziano; Pam Factor-Litvak

Drinking water manganese (WMn) is a potential threat to childrens health due to its associations with a wide range of outcomes including cognitive, behavioral and neuropsychological effects. Although adverse effects of Mn on cognitive function of the children indicate possible impact on their academic achievement little evidence on this issue is available. Moreover, little is known regarding potential interactions between exposure to Mn and other metals, especially water arsenic (WAs). In Araihazar, a rural area of Bangladesh, we conducted a cross-sectional study of 840 children to investigate associations between WMn and WAs and academic achievement in mathematics and languages among elementary school-children, aged 8-11 years. Data on As and Mn exposure were collected from the participants at the baseline of an ongoing longitudinal study of school-based educational intervention. Annual scores of the study children in languages (Bangla and English) and mathematics were obtained from the academic achievement records of the elementary schools. WMn above the WHO standard of 400μg/L was associated with 6.4% score loss (95% CI=-12.3 to -0.5) in mathematics achievement test scores, adjusted for WAs and other sociodemographic variables. We did not find any statistically significant associations between WMn and academic achievement in either language. Neither WAs nor urinary As was significantly related to any of the three academic achievement scores. Our finding suggests that a large number of children in rural Bangladesh may experience deficits in mathematics due to high concentrations of Mn exposure in drinking water.

Collaboration


Dive into the Vesna Slavkovich's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge