Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Francescangeli is active.

Publication


Featured researches published by Federica Francescangeli.


Oncogene | 2011

Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer

Valeria Coppola; Antonio Addario; M Patrizii; Marcello Maugeri-Saccà; Lorenzo Memeo; Cristina Colarossi; Federica Francescangeli; Mauro Biffoni; Devis Collura; Arianna Giacobbe; Leonardo D'Urso; Mario Falchi; M A Venneri; G. Muto; R De Maria; Désirée Bonci

The interaction between cancer cells and microenvironment has a critical role in tumor development and progression. Although microRNAs regulate all the major biological mechanisms, their influence on tumor microenvironment is largely unexplored. Here, we investigate the role of microRNAs in the tumor-supportive capacity of stromal cells. We demonstrated that miR-15 and miR-16 are downregulated in fibroblasts surrounding the prostate tumors of the majority of 23 patients analyzed. Such downregulation of miR-15 and miR-16 in cancer-associated fibroblasts (CAFs) promoted tumor growth and progression through the reduced post-transcriptional repression of Fgf-2 and its receptor Fgfr1, which act on both stromal and tumor cells to enhance cancer cell survival, proliferation and migration. Moreover, reconstitution of miR-15 and miR-16 impaired considerably the tumor-supportive capability of stromal cells in vitro and in vivo. Our data suggest a molecular circuitry in which miR-15 and miR-16 and their correlated targets cooperate to promote tumor expansion and invasiveness through the concurrent activity on stromal and cancer cells, thus providing further support to the development of therapies aimed at reconstituting miR-15 and miR-16 in advanced prostate cancer.


Cancer Research | 2010

Aurora-A Is Essential for the Tumorigenic Capacity and Chemoresistance of Colorectal Cancer Stem Cells

Patrizia Cammareri; Alessandro Scopelliti; Matilde Todaro; Vincenzo Eterno; Federica Francescangeli; Mary Pat Moyer; Antonino Agrusa; Francesco Dieli; Ann Zeuner; Giorgio Stassi

Colorectal cancer stem cells (CR-CSC) are responsible for the generation and maintenance of intestinal tumors and are highly resistant to conventional chemotherapeutic agents. Aurora-A, a serine-threonine kinase involved in mitosis regulation, plays multiple key functions in tumor initiation and progression. We found that Aurora-A is overexpressed in primary colorectal tumor cells, in the CR-CSC fraction, and in stem cell-derived differentiated cells, compared with normal colon tissue. Aurora-A expression was functionally linked to centrosome amplification in CR-CSC, as indicated by the decrease in cells with multiple centrosomes that followed Aurora-A silencing. Knockdown of Aurora-A resulted in growth inhibition of CR-CSC, alteration of cell cycle kinetics, and downregulation of the expression levels of antiapoptotic Bcl-2 family members, strongly sensitizing to chemotherapy-induced cell death. Moreover, Aurora-A silencing compromised the ability to form tumor xenografts in immunocompromised mice and reduced the migratory capacity of CR-CSC. Altogether, these results indicate that Aurora-A is essential for CR-CSC regeneration and resistance to cytotoxic stimuli and suggest that therapies directed against Aurora-A may effectively target the stem cell population in colorectal cancer.


Oncogene | 2013

BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition

Valeria Coppola; M Patrizii; A Cannistraci; Antonio Addario; Marcello Maugeri-Saccà; Mauro Biffoni; Federica Francescangeli; M Cordenonsi; S Piccolo; Lorenzo Memeo; Alfredo Pagliuca; G. Muto; Ann Zeuner; R De Maria; Désirée Bonci

Prostate cancer is one of the leading causes of cancer-related death in men. Despite significant advances in prostate cancer diagnosis and management, the molecular events involved in the transformation of normal prostate cells into cancer cells have not been fully understood. It is generally accepted that prostate cancer derives from the basal compartment while expressing luminal markers. We investigated whether downregulation of the basal protein B-cell translocation gene 2 (BTG2) is implicated in prostate cancer transformation and progression. Here we show that BTG2 loss can shift normal prostate basal cells towards luminal markers expression, a phenotype also accompanied by the appearance of epithelial–mesenchymal transition (EMT) traits. We also show that the overexpression of microRNA (miR)-21 suppresses BTG2 levels and promotes the acquisition of luminal markers and EMT in prostate cells. Furthermore, by using an innovative lentiviral vector able to compete with endogenous mRNA through the overexpression of the 3′-untranslated region of BTG2, we demonstrate that in prostate tumor cells, the levels of luminal and EMT markers can be reduced by derepression of BTG2 from microRNA-mediated control. Finally, we show that the loss of BTG2 expression confers to non-tumorigenic prostate cells ability to grow in an orthotopic murine model, thus demonstrating the central role of BTG2 downregulaton in prostate cancer biology.


Cell Death & Differentiation | 2014

Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer

Ann Zeuner; Federica Francescangeli; P Contavalli; G Zapparelli; Tiziana Apuzzo; Adriana Eramo; Marta Baiocchi; M L De Angelis; Mauro Biffoni; Giovanni Sette; Matilde Todaro; Giorgio Stassi; R De Maria

Lung cancer is the most common cause of cancer-related mortality worldwide, urging the discovery of novel molecular targets and therapeutic strategies. Stem cells have been recently isolated from non-small cell lung cancer (NSCLC), thus allowing the investigation of molecular pathways specifically active in the tumorigenic population. We have found that Bcl-XL is constantly expressed by lung cancer stem cells (LCSCs) and has a prominent role in regulating LCSC survival. Whereas chemotherapeutic agents were scarcely effective against LCSC, the small molecule Bcl-2/Bcl-XL inhibitor ABT-737, but not the selective Bcl-2 inhibitor ABT-199, induced LCSC death at nanomolar concentrations. Differently from gemcitabine, which preferentially eliminated proliferating LCSC, ABT-737 had an increased cytotoxic activity in vitro towards quiescent/slow-proliferating LCSC, which expressed high levels of Bcl-XL. In vivo, ABT-737 as a single agent was able to inhibit the growth of LCSC-derived xenografts and to reduce cancer stem cell content in treated tumors. Altogether, these results indicate that quiescent/slow-proliferating LCSC strongly depend on Bcl-XL for their survival and indicate Bcl-XL inhibition as a potential therapeutic avenue in NSCLC.


Stem Cells | 2012

Proliferation State and Polo‐Like Kinase1 Dependence of Tumorigenic Colon Cancer Cells

Federica Francescangeli; M Patrizii; Michele Signore; Giulia Federici; Simone Di Franco; Alfredo Pagliuca; Marta Baiocchi; Mauro Biffoni; Lucia Ricci Vitiani; Matilde Todaro; Ruggero De Maria; Ann Zeuner

Tumor‐initiating cells are responsible for tumor maintenance and relapse in solid and hematologic cancers. Although tumor‐initiating cells were initially believed to be mainly quiescent, rapidly proliferating tumorigenic cells were found in breast cancer. In colon cancer, the proliferative activity of the tumorigenic population has not been defined, although it represents an essential parameter for the development of more effective therapeutic strategies. Here, we show that tumorigenic colon cancer cells can be found in a rapidly proliferating state in vitro and in vivo, both in human tumors and mouse xenografts. Inhibitors of polo‐like kinase1 (Plk1), a mitotic kinase essential for cell proliferation, demonstrated maximal efficiency over other targeted compounds and chemotherapeutic agents in inducing death of colon cancer‐initiating cells in vitro. In vivo, Plk1 inhibitors killed CD133+ colon cancer cells leading to complete growth arrest of colon cancer stem cell‐derived xenografts, whereas chemotherapeutic agents only slowed tumor progression. While chemotherapy treatment increased CD133+ cell proliferation, treatment with Plk1 inhibitors eliminated all proliferating tumor‐initiating cells. Quiescent CD133+ cells that survived the treatment with Plk1 inhibitors could be killed by subsequent Plk1 inhibition when they exited from quiescence. Altogether, these results provide a new insight into the proliferative status of colon tumor‐initiating cells both in basal conditions and in response to therapy and indicate Plk1 inhibitors as potentially useful in the treatment of colorectal cancer. Stem Cells2012;30:1819–1830


Cell Death & Differentiation | 2011

The Notch2–Jagged1 interaction mediates stem cell factor signaling in erythropoiesis

Ann Zeuner; Federica Francescangeli; Michele Signore; M A Venneri; Francesca Pedini; N Felli; Alfredo Pagliuca; C. Conticello; R De Maria

Stem cell factor (SCF), the ligand for the c-kit receptor, is essential for the production of red blood cells during development and stress erythropoiesis. SCF promotes erythroblast proliferation and survival, while delaying erythroid differentiation through mechanisms that are largely unknown. In cultures of primary human differentiating erythroblasts, we found that SCF induces an increase in the expression of Notch2, a member of the Notch family implicated in the control of cell growth and differentiation. Functional inhibition of either Notch or its ligand Jagged1 inhibited the effects of SCF on erythroid cell expansion. SCF also induced the expression of Hes-1 and GATA-2, which may contribute to transduce Notch2 signals in response to SCF. Transduction of primary erythroid precursors with a dominant-negative Notch2 mutant inhibited both basal and SCF-mediated erythroblast expansion, and counteracted the effects of SCF on erythroblast differentiation. These findings provide a clue to understand the effects of increased proliferation and delayed differentiation elicited by SCF on the erythroid compartment and indicate Notch2 as a new player in the regulation of red cell differentiation.


Stem Cells Translational Medicine | 2016

Cancer Stem Cell-Based Models of Colorectal Cancer Reveal Molecular Determinants of Therapy Resistance

Maria Laura De Angelis; Ann Zeuner; Eleonora Policicchio; Giorgio Russo; Alessandro Bruselles; Michele Signore; Sara Vitale; Gabriele De Luca; Emanuela Pilozzi; Alessandra Boe; Giorgio Stassi; Lucia Ricci-Vitiani; Carla Azzurra Amoreo; Alfredo Pagliuca; Federica Francescangeli; Marco Tartaglia; Ruggero De Maria; Marta Baiocchi

Colorectal cancer (CRC) therapy mainly relies on the use of conventional chemotherapeutic drugs combined, in a subset of patients, with epidermal growth factor receptor [EGFR]‐targeting agents. Although CRC is considered a prototype of a cancer stem cell (CSC)‐driven tumor, the effects of both conventional and targeted therapies on the CSC compartment are largely unknown. We have optimized a protocol for colorectal CSC isolation that allowed us to obtain CSC‐enriched cultures from primary tumor specimens, with high efficiency. CSC isolation was followed by in vitro and in vivo validation, genetic characterization, and drug sensitivity analysis, thus generating panels of CSC lines with defined patterns of genetic mutations and therapy sensitivity. Colorectal CSC lines were polyclonal and maintained intratumor heterogeneity in terms of somatically acquired mutations and differentiation state. Such CSC‐enriched cultures were used to investigate the effects of both conventional and targeted therapies on the CSC compartment in vivo and to generate a proteomic picture of signaling pathways implicated in sensitivity/resistance to anti‐EGFR agents. We propose CSC lines as a sound preclinical framework to test the effects of therapies in vitro and in vivo and to identify novel determinants of therapy resistance.


Cell Death & Differentiation | 2015

Dynamic regulation of the cancer stem cell compartment by Cripto-1 in colorectal cancer

Federica Francescangeli; P Contavalli; M L De Angelis; Marta Baiocchi; G Gambara; Alfredo Pagliuca; A Fiorenzano; C Prezioso; Alessandra Boe; Matilde Todaro; Giorgio Stassi; N P Castro; K Watanabe; D S Salomon; R De Maria; G Minchiotti; Ann Zeuner

Stemness was recently depicted as a dynamic condition in normal and tumor cells. We found that the embryonic protein Cripto-1 (CR1) was expressed by normal stem cells at the bottom of colonic crypts and by cancer stem cells (CSCs) in colorectal tumor tissues. CR1-positive populations isolated from patient-derived tumor spheroids exhibited increased clonogenic capacity and expression of stem-cell-related genes. CR1 expression in tumor spheroids was variable over time, being subject to a complex regulation of the intracellular, surface and secreted protein, which was related to changes of the clonogenic capacity at the population level. CR1 silencing induced CSC growth arrest in vitro with a concomitant decrease of Src/Akt signaling, while in vivo it inhibited the growth of CSC-derived tumor xenografts and reduced CSC numbers. Importantly, CR1 silencing in established xenografts through an inducible expression system decreased CSC growth in both primary and metastatic tumors, indicating an essential role of CR1 in the regulation the CSC compartment. These results point to CR1 as a novel and dynamically regulated effector of stem cell functions in colorectal cancer.


Blood | 2008

Activity of the BH3 mimetic ABT-737 on polycythemia vera erythroid precursor cells

Ann Zeuner; Francesca Pedini; Federica Francescangeli; Michele Signore; Gabriella Girelli; Agostino Tafuri; Ruggero De Maria

An increased expression of antiapoptotic molecules is often found in malignant cells, where it contributes to their clonal expansion by conferring an improved survival ability. We found that erythroid precurors derived from patients with polycythemia vera (PV) with medium and high JAK2V617F mutation rates often express elevated levels of the antiapoptotic molecules Bcl-2 and Bcl-X(L) (5 of 12 patients with 3 to 7 times Bcl-2 and 3 of 12 patients with 4 to 7 times Bcl-X(L) than average normal controls) and are more resistant to myelosuppressive drugs than normal erythroblasts. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-X(L), and Bcl-W, induced apoptosis preferentially in JAK2V617F-high PV erythroid precursors as compared with JAK2V617F-low or normal erythroblasts. ABT-737 inhibited also the proliferation of PV erythroblasts and interfered with the formation of endogenous erythroid colonies by PV hematopoietic progenitors. Altogether, these results suggest that small-molecule inhibitors of Bcl-2/Bcl-X(L) may be used in the treatment of patients with PV with high JAK2V617F allele burden.


Nature Communications | 2016

Cripto is essential to capture mouse epiblast stem cell and human embryonic stem cell pluripotency.

Alessandro Fiorenzano; Emilia Pascale; Cristina D'Aniello; Dario Acampora; Cecilia Bassalert; Francesco Russo; Gennaro Andolfi; Mauro Biffoni; Federica Francescangeli; Ann Zeuner; Claudia Angelini; Claire Chazaud; Eduardo J. Patriarca; Annalisa Fico; Gabriella Minchiotti

Known molecular determinants of developmental plasticity are mainly transcription factors, while the extrinsic regulation of this process has been largely unexplored. Here we identify Cripto as one of the earliest epiblast markers and a key extracellular determinant of the naive and primed pluripotent states. We demonstrate that Cripto sustains mouse embryonic stem cell (ESC) self-renewal by modulating Wnt/β-catenin, whereas it maintains mouse epiblast stem cell (EpiSC) and human ESC pluripotency through Nodal/Smad2. Moreover, we provide unprecedented evidence that Cripto controls the metabolic reprogramming in ESCs to EpiSC transition. Remarkably, Cripto deficiency attenuates ESC lineage restriction in vitro and in vivo, and permits ESC transdifferentiation into trophectoderm lineage, suggesting that Cripto has earlier functions than previously recognized. All together, our studies provide novel insights into the current model of mammalian pluripotency and contribute to the understanding of the extrinsic regulation of the first cell lineage decision in the embryo.

Collaboration


Dive into the Federica Francescangeli's collaboration.

Top Co-Authors

Avatar

Ann Zeuner

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

R De Maria

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Alfredo Pagliuca

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Marta Baiocchi

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Mauro Biffoni

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Michele Signore

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Antonio Addario

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Désirée Bonci

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

M Patrizii

Istituto Superiore di Sanità

View shared research outputs
Top Co-Authors

Avatar

Ruggero De Maria

Catholic University of the Sacred Heart

View shared research outputs
Researchain Logo
Decentralizing Knowledge