Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Federica Riccardo is active.

Publication


Featured researches published by Federica Riccardo.


Clinical Cancer Research | 2014

CSPG4-Specific Immunity and Survival Prolongation in Dogs with Oral Malignant Melanoma Immunized with Human CSPG4 DNA

Federica Riccardo; Selina Iussich; L. Maniscalco; Saray Lorda Mayayo; Giuseppe La Rosa; Maddalena Arigoni; Raffaella De Maria; Francesca Gattino; Stefania Lanzardo; Elena Lardone; Marina Martano; Emanuela Morello; Simone Prestigio; Alessandra Fiore; Elena Quaglino; Sara Zabarino; Soldano Ferrone; Paolo Buracco; Federica Cavallo

Purpose: Due to the many similarities with its human counterpart, canine malignant melanoma (cMM) is a valuable model in which to assess the efficacy of novel therapeutic strategies. The model is herein used to evaluate the immunogenicity, safety, and therapeutic efficacy of a human chondroitin sulfate proteoglycan-4 (hCSPG4) DNA-based vaccine. The fact that homology between hCSPG4 and cCSPG4 amino-acidic sequences stands at more than 80% provides the rationale for using an hCSPG4 DNA vaccine in the cMM model. Experimental Design: Dogs with stage II–III surgically resected CSPG4-positive oral MM were subjected to monthly intramuscular plasmid administration, which was followed immediately by electroporation (electrovaccination) for at least 6, and up to 20, months. The immunogenicity, safety, and therapeutic efficacy of the vaccine have been evaluated. Results: hCSPG4 electrovaccination caused no clinically relevant local or systemic side effects and resulted in significantly longer overall and disease-free survival times in 14 vaccinated dogs as compared with 13 nonvaccinated controls. All vaccinated dogs developed antibodies against both hCSPG4 and cCSPG4. Seven vaccinated dogs were also tested for a cCSPG4-specific T-cell response and only two gave a detectable interferon (IFN)γ response. Conclusion: Xenogeneic electrovaccination against CSPG4 is able to overcome host unresponsiveness to the “self” antigen and seems to be effective in treating cMM, laying the foundation for its translation to a human clinical setting. Clin Cancer Res; 20(14); 3753–62. ©2014 AACR.


BMC Genomics | 2014

Characterization of a genetic mouse model of lung cancer: a promise to identify Non-Small Cell Lung Cancer therapeutic targets and biomarkers.

Federica Riccardo; Maddalena Arigoni; Genny Buson; Elisa Zago; Manuela Iezzi; Dario Livio Longo; Matteo Carrara; Alessandra Fiore; Simona Nuzzo; Silvio Bicciato; Patrizia Nanni; Lorena Landuzzi; Federica Cavallo; Raffaele Calogero; Elena Quaglino

AbstracBackgroundNon-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers.ResultsWe performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-rasLA1/p53R172HΔg and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the increase of tumor mass. Fusion events were not detected in K-rasLA1/p53R172HΔg tumors. Differential expression at exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of the genes showed a significant correlation between exon-level expression and disease prognosis. Differential expression at gene-level allowed the identification of 1513 genes with a significant increase in expression associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900 samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its expression in the supernatant of a cell line derived by a K-rasLA1/p53R172HΔg mouse tumor. ADORA3 is instead involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our model p53 is inactivated, ADORA3 does not negatively affect tumor growth but remains expressed on tumor cells. Thus, it could represent an interesting target for the development of antibody-targeted therapy on a subset of NSCLC, which are p53 null and ADORA3 positive.ConclusionsOur study provided a complete transcription overview of the K-rasLA1/p53R172HΔg mouse NSCLC model. This approach allowed the detection of ADORA3 as a potential target for antibody-based therapy in p53 mutated tumors.


Journal of Molecular Medicine | 2011

HER2-based recombinant immunogen to target DCs through FcγRs for cancer immunotherapy

Ilaria Grazia Zizzari; Filippo Veglia; Federica Taurino; Hassan Rahimi; Elena Quaglino; Francesca Belleudi; Federica Riccardo; Morena Antonilli; Chiara Napoletano; Filippo Bellati; Pierluigi Benedetti-Panici; Maria Rosaria Torrisi; Luigi Frati; Marianna Nuti; Aurelia Rughetti

Dendritic cell (DC)-based immunotherapy is an attractive approach to induce long lasting antitumor effector cells aiming to control cancer progression. DC targeting is a critical step in the design of DC vaccines in order to optimize delivery and processing of the antigen, and several receptors have been characterized for this purpose. In this study, we employed the FcγRs to target DCs both in vitro and in vivo. We designed a recombinant molecule (HER2-Fc) composed of the immunogenic sequence of the human tumor-associated antigen HER2 (aa 364–391) and the Fc domain of a human IgG1. In a mouse model, HER2-Fc cDNA vaccination activated significant T cell-mediated immune responses towards HER2 peptide epitopes as detected by IFN-γ ELIspot and induced longer tumor latency as compared to Ctrl-Fc-vaccinated control mice. Human in vitro studies indicated that the recombinant HER2-Fc immunogen efficiently targeted human DCs through the FcγRs resulting in protein cross-processing and in the activation of autologous HER2-specific CD8+ T cells from breast cancer patients.


Cancers | 2011

Chimeric DNA Vaccines against ErbB2+ Carcinomas: From Mice to Humans

Elena Quaglino; Federica Riccardo; Marco Macagno; Silvio Bandini; Rodica Cojoca; Elisabetta Ercole; Augusto Amici; Federica Cavallo

DNA vaccination exploits a relatively simple and flexible technique to generate an immune response against microbial and tumor-associated antigens (TAAs). Its effectiveness is enhanced by the application of an electrical shock in the area of plasmid injection (electroporation). In our studies we exploited a sophisticated electroporation device approved for clinical use (Cliniporator, IGEA, Carpi, Italy). As the target antigen is an additional factor that dramatically modulates the efficacy of a vaccine, we selected ErbB2 receptor as a target since it is an ideal oncoantigen. It is overexpressed on the cell membrane by several carcinomas for which it plays an essential role in driving their progression. Most oncoantigens are self-tolerated molecules. To circumvent immune tolerance we generated two plasmids (RHuT and HuRT) coding for chimeric rat/human ErbB2 proteins. Their immunogenicity was compared in wild type mice naturally tolerant for mouse ErbB2, and in transgenic mice that are also tolerant for rat or human ErbB2. In several of these mice, RHuT and HuRT elicited a stronger anti-tumor response than plasmids coding for fully human or fully rat ErbB2. The ability of heterologous moiety to blunt immune tolerance could be exploited to elicit a significant immune response in patients. A clinical trial to delay the recurrence of ErbB2+ carcinomas of the oral cavity, oropharynx and hypopharynx is awaiting the approval of the Italian authorities.


Veterinary and Comparative Oncology | 2017

Prolongation of survival of dogs with oral malignant melanoma treated by en bloc surgical resection and adjuvant CSPG4-antigen electrovaccination

L. A. Piras; Federica Riccardo; Selina Iussich; L. Maniscalco; Francesca Gattino; Marina Martano; Emanuela Morello; S. Lorda Mayayo; Valeria Rolih; F. Garavaglia; R. De Maria; Elena Lardone; F. Collivignarelli; D. Mignacca; D. Giacobino; Soldano Ferrone; Federica Cavallo; Paolo Buracco

Reported post-surgery 1-year survival rate for oral canine malignant melanoma (cMM) is around 30%; novel treatments are needed as the role of adjuvant chemotherapy is unclear. This prospective study regards adjuvant electrovaccination with human chondroitin sulfate proteoglycan-4 (hCSPG4)-encoded plasmid in 23 dogs with resected II/III-staged CSPG4-positive oral cMM compared with 19 dogs with resected only II/III-staged CSPG4-positive oral cMM. Vaccination resulted in 6-, 12-, 18- and 24-month survival rate of 95.6, 73.9, 47.8 and 30.4%, respectively [median survival time (MST) 684 days, range 78-1694, 8 of 23 dogs alive] and 6-, 12-, 18- and 24-month disease-free interval (DFI) rate of 82.6, 47.8, 26.1 and 17.4%, respectively (DFI 477 days, range 50-1694). Non-vaccinated dogs showed 6-, 12-, 18- and 24-month survival rate of 63.2, 26.3, 15.8 and 5.3%, respectively (MST 200 days, range 75-1507, 1 of 19 dogs alive) and 6-, 12-, 18- and 24-month DFI rate of 52.6, 26.3, 10.5 and 5.3%, respectively (DFI 180 days, range 38-1250). Overall survival and DFI of vaccinated dogs was longer in those <20 kg. In vaccinated and non-vaccinated dogs local recurrence rate was 34.8 and 42%, respectively while lung metastatic rate was 39 and 79%, respectively.


Plant Biotechnology Journal | 2016

The rat ErbB2 tyrosine kinase receptor produced in plants is immunogenic in mice and confers protective immunity against ErbB2 + mammary cancer

Slavica Matić; Elena Quaglino; Lucia Arata; Federica Riccardo; Mattia Pegoraro; Marta Vallino; Federica Cavallo; Emanuela Noris

The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.


Oncotarget | 2018

Small non-coding RNA profiling in human biofluids and surrogate tissues from healthy individuals: description of the diverse and most represented species

Giulio Ferrero; Francesca Cordero; Sonia Tarallo; Maddalena Arigoni; Federica Riccardo; Gaetano Gallo; Guglielmo Ronco; Marco Allasia; Neha Kulkarni; Giuseppe Matullo; Paolo Vineis; Raffaele A. Calogero; Barbara Pardini; Alessio Naccarati

The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.


Oncogene | 2017

Deregulation of MicroRNAs mediated control of carnitine cycle in prostate cancer: molecular basis and pathophysiological consequences

Anna Valentino; Anna Calarco; A Di Salle; Mauro Finicelli; Stefania Crispi; Raffaele Adolfo Calogero; Federica Riccardo; A Sciarra; A Gentilucci; U Galderisi; Sabrina Margarucci; Gianfranco Peluso

Cancer cells reprogram their metabolism to maintain both viability and uncontrolled proliferation. Although an interplay between the genetic, epigenetic and metabolic rewiring in cancer is beginning to emerge, it remains unclear how this metabolic plasticity occurs. Here, we report that in prostate cancer cells (PCCs) microRNAs (miRNAs) greatly contribute to deregulation of mitochondrial fatty acid (FA) oxidation via carnitine system modulation. We provide evidence that the downregulation of hsa-miR-124-3p, hsa-miR-129-5p and hsa-miR-378 induced an increase in both expression and activity of CPT1A, CACT and CrAT in malignant prostate cells. Moreover, the analysis of human prostate cancer and prostate control specimens confirmed the aberrant expression of miR-124-3p, miR-129-5p and miR-378 in primary tumors. Forced expression of the miRNAs mentioned above affected tumorigenic properties, such as proliferation, migration and invasion, in PC3 and LNCaP cells regardless of their hormone sensitivity. CPT1A, CACT and CrAT overexpression allow PCCs to be more prone on FA utilization than normal prostate cells, also in the presence of high pyruvate concentration. Finally, the simultaneous increase of CPT1A, CACT and CrAT is fundamental for PCCs to sustain FA oxidation in the presence of heavy lipid load on prostate cancer mitochondria. Indeed, the downregulation of only one of these proteins reduces PCCs metabolic flexibility with the accumulation of FA-intermediate metabolites in the mitochondria. Together, our data implicate carnitine cycle as a primary regulator of adaptive metabolic reprogramming in PCCs and suggest new potential druggable pathways for prevention and treatment of prostate cancer.


OncoImmunology | 2015

Antitumor immunization of mothers delays tumor development in cancer-prone offspring

Giuseppina Barutello; Claudia Curcio; Michela Spadaro; Maddalena Arigoni; Rosalinda Trovato; Elisabetta Bolli; Yujuan Zheng; Francesco Ria; Elena Quaglino; Manuela Iezzi; Federica Riccardo; Lars Holmgren; Guido Forni; Federica Cavallo

Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T–cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable.


OncoImmunology | 2016

The non-inflammatory role of C1q during Her2/neu-driven mammary carcinogenesis

Silvio Bandini; Marco Macagno; Albana Hysi; Stefania Lanzardo; Laura Conti; Amanda Bello; Federica Riccardo; Roberto Ruiu; Irene Fiore Merighi; Guido Forni; Manuela Iezzi; Elena Quaglino; Federica Cavallo

ABSTRACT There is an ever increasing amount of evidence to support the hypothesis that complement C1q, the first component of the classical complement pathway, is involved in the regulation of cancer growth, in addition to its role in fighting infections. It has been demonstrated that C1q is expressed in the microenvironment of various types of human tumors, including breast adenocarcinomas. This study compares carcinogenesis progression in C1q deficient (neuT-C1KO) and C1q competent neuT mice in order to investigate the role of C1q in mammary carcinogenesis. Significantly accelerated autochthonous neu+ carcinoma progression was paralleled by accelerated spontaneous lung metastases occurrence in C1q deficient mice. Surprisingly, this effect was not caused by differences in the tumor-infiltrating cells or in the activation of the complement classical pathway, since neuT-C1KO mice did not display a reduction in C3 fragment deposition at the tumor site. By contrast, a significant higher number of intratumor blood vessels and a decrease in the activation of the tumor suppressor WW domain containing oxidoreductase (WWOX) were observed in tumors from neuT-C1KO as compare with neuT mice. In parallel, an increase in Her2/neu expression was observed on the membrane of tumor cells. Taken together, our findings suggest that C1q plays a direct role both on halting tumor angiogenesis and on inducing apoptosis in mammary cancer cells by coordinating the signal transduction pathways linked to WWOX and, furthermore, highlight the role of C1q in mammary tumor immune surveillance regardless of complement system activation.

Collaboration


Dive into the Federica Riccardo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge