Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppina Barutello is active.

Publication


Featured researches published by Giuseppina Barutello.


Angiogenesis | 2012

A vaccine targeting angiomotin induces an antibody response which alters tumor vessel permeability and hampers the growth of established tumors

Maddalena Arigoni; Giuseppina Barutello; Stefania Lanzardo; Dario Livio Longo; Silvio Aime; Claudia Curcio; Manuela Iezzi; Yujuan Zheng; Irmeli Barkefors; Lars Holmgren; Federica Cavallo

Angiomotin (Amot) is one of several identified angiostatin receptors expressed by the endothelia of angiogenic tissues. We have shown that a DNA vaccine targeting Amot overcome immune tolerance and induce an antibody response that hampers the progression of incipient tumors. Following our observation of increased Amot expression on tumor endothelia concomitant with the progression from pre-neoplastic lesions to full-fledged carcinoma, we evaluated the effect of anti-Amot vaccination on clinically evident tumors. Electroporation of plasmid coding for the human Amot (pAmot) significantly delayed the progression both of autochthonous tumors in cancer prone BALB-neuT and PyMT genetically engineered mice and transplantable TUBO tumor in wild-type BALB/c mice. The intensity of the inhibition directly correlated with the titer of anti-Amot antibodies induced by the vaccine. Tumor inhibition was associated with an increase of vessels diameter with the formation of lacunar spaces, increase in vessel permeability, massive tumor perivascular necrosis and an effective epitope spreading that induces an immune response against other tumor associated antigens. Greater tumor vessel permeability also markedly enhances the antitumor effect of doxorubicin. These data provide a rationale for the development of novel anticancer treatments based on anti-Amot vaccination in conjunction with chemotherapy regimens.


Analytical Chemistry | 2013

On the Fate of MRI Gd-Based Contrast Agents in Cells. Evidence for Extensive Degradation of Linear Complexes upon Endosomal Internalization

Enza Di Gregorio; Eliana Gianolio; Rachele Stefania; Giuseppina Barutello; Giuseppe Digilio; Silvio Aime

Commercial Gd-containing complexes are often used as MRI reporters in cellular labeling procedures as they are internalized into endosomes by pinocytosis. A methodology has been applied to assess the relative stability of three commercial Gd contrast agents following cellular uptake in fibroblasts and macrophages. It has been found that the acyclic series of Gd MRI contrast agents are degraded much more rapidly than their macrocyclic analogues, following endosomal internalization into living cells. This helps to explain their causal role in the development of nephrogenic systemic fibrosis in renally impaired patients. The methodology has also been applied to assess the fate of Gd-DTPA-BMA-loaded liposomes upon their endosomal internalization. Resistant liposomes prevent the degradation of the complex, whereas liposomes designed to release their payload in the acidic environments show a loss of integrity of Gd-DTPA-BMA analogous to the one observed upon internalization of the free complex.


OncoImmunology | 2013

Early onset and enhanced growth of autochthonous mammary carcinomas in C3-deficient Her2/neu transgenic mice

Silvio Bandini; Claudia Curcio; Marco Macagno; Elena Quaglino; Maddalena Arigoni; Stefania Lanzardo; Albana Hysi; Giuseppina Barutello; Lorena Consolino; Dario Livio Longo; Piero Musiani; Guido Forni; Manuela Iezzi; Federica Cavallo

Aside from its classical role in fighting infections, complement is an important, although poorly understood, component of the tumor microenvironment. In particular, the tumor growth-regulatory activities of complement remain under debate. To assess the role of the complement system in the progression of autochthonous mammary carcinomas, we have crossed complement component 3 (C3)-deficient (C3−/−) BALB/c male mice with BALB/c females expressing the activated rat Her2/neu oncogene (neuT). Although neuT transgenic mice develop spontaneous mammary cancers with 100% penetrance, a significantly shorter tumor latency (i.e., earlier onset of the first palpable tumor), a higher frequency of multiple tumors (multiplicity), and a dramatic increase in the tumor growth rate were found in neuT-C3−/− animals. The accelerated tumor onset observed in neuT-C3−/− mice was paralleled by an earlier onset of spontaneous lung metastases and by an increase in Her2 expression levels, primarily on the surface of tumor cells. The percentage of immune cells infiltrating neuT carcinomas was similar in C3-deficient and C3-proficient mice, with the exception of a significant increase in the frequency of regulatory T cells in neuT-C3−/− tumors. Of particular interest, the enhanced immunosuppression imparted by C3 deficiency clearly influenced the immunogenic phenotype of autochthonous mammary tumors as neuT-C3−/− malignant cells transplanted into syngeneic immunocompetent hosts gave rise to lesions with a significantly delayed kinetics and reduced incidence as compared with cells obtained from neuT C3-proficient tumors. Finally, increased blood vessel permeability was evident in neuT-C3−/− tumors, although a similar number of tumor vessels was found in neuT and neuT-C3−/− lesions. Altogether, these data suggest that complement plays a crucial role in the immunosurveillance and, possibly, the immunoediting of Her2-driven autochthonous mammary tumors.


BioMed Research International | 2014

Microenvironment, Oncoantigens, and Antitumor Vaccination: Lessons Learned from BALB-neuT Mice

Laura Conti; Roberto Ruiu; Giuseppina Barutello; Marco Macagno; Silvio Bandini; Federica Cavallo; Stefania Lanzardo

The tyrosine kinase human epidermal growth factor receptor 2 (HER2) gene is amplified in approximately 20% of human breast cancers and is associated with an aggressive clinical course and the early development of metastasis. Its crucial role in tumor growth and progression makes HER2 a prototypic oncoantigen, the targeting of which may be critical for the development of effective anticancer therapies. The setup of anti-HER2 targeting strategies has revolutionized the clinical outcome of HER2+ breast cancer. However, their initial success has been overshadowed by the onset of pharmacological resistance that renders them ineffective. Since the tumor microenvironment (TME) plays a crucial role in drug resistance, the design of more effective anticancer therapies should depend on the targeting of both cancer cells and their TME as a whole. In this review, starting from the successful know-how obtained with a HER2+ mouse model of mammary carcinogenesis, the BALB-neuT mice, we discuss the role of TME in mammary tumor development. Indeed, a deeper knowledge of antigens critical for cancer outbreak and progression and of the mechanisms that regulate the interplay between cancer and stromal cell populations could advise promising ways for the development of the best anticancer strategy.


Scientific Reports | 2016

Angiomotin like-1 is a novel component of the N-cadherin complex affecting endothelial/pericyte interaction in normal and tumor angiogenesis

Yujuan Zheng; Yuanyuan Zhang; Giuseppina Barutello; Kungchun Chiu; Maddalena Arigoni; Costanza Giampietro; Federica Cavallo; Lars Holmgren

Transmission of mechanical force via cell junctions is an important component that molds cells into shapes consistent with proper organ function. Of particular interest are the cadherin transmembrane proteins, which play an essential role in connecting cell junctions to the intra-cellular cytoskeleton. Understanding how these biomechanical complexes orchestrate intrinsic and extrinsic forces is important for our understanding of the underlying mechanisms driving morphogenesis. We have previously identified the Amot protein family, which are scaffold proteins that integrate polarity, junctional, and cytoskeletal cues to modulate cellular shape in endothelial as well as epithelial cells. In this report, we show that AmotL1 is a novel partner of the N-cadherin protein complex. We studied the role of AmotL1 in normal retinal as well as tumor angiogenesis using inducible endothelial-specific knock-out mice. We show that AmotL1 is essential for normal establishment of vascular networks in the post-natal mouse retina as well as in a transgenic breast cancer model. The observed phenotypes were consistent with a non-autonomous pericyte defect. We show that AmotL1 forms a complex with N-cadherin present on both endothelial cells and pericytes. We propose that AmotL1 is an essential effector of the N-cadherin mediated endothelial/pericyte junctional complex.


European Journal of Cancer | 2014

DNA vaccination against membrane-bound Kit ligand: A new approach to inhibiting tumour growth and angiogenesis

Cristina Olgasi; Patrizia Dentelli; Arturo Rosso; Alessandra Iavello; Gabriele Togliatto; Valentina Toto; Marcella Liberatore; Giuseppina Barutello; Piero Musiani; Federica Cavallo; Maria Felice Brizzi

A functional c-Kit/Kit ligand (KitL) signalling network is required for tumour angiogenesis and growth, and therefore the c-Kit/KitL system might well be a suitable target for the cancer immunotherapy approach. We herein describe a strategy that targets membrane-bound KitL (mbKitL) via DNA vaccination. The vaccination procedure generated antibodies which are able to detect mbKitL on human tumour endothelial cells (TECs) and on the breast cancer cell line: TSA. DNA vaccination, interferes with tumour vessel formation and transplanted tumour growth in vivo. Histological analysis demonstrates that, while tumour cell proliferation and vessel stabilisation are impaired, vessel permeability is increased in mice that produce mbKitL-targeting antibodies. We also demonstrate that vessel stabilisation and tumour growth require Akt activation in endothelial cells but not in pericytes. Moreover, we found that regulatory T cells (Treg) and tumour infiltrating inflammatory cells, involved in tumour growth and angiogenesis, were reduced in number in the tumour microenvironment of mice that generate anti-mbKitL antibodies. These data provide evidence that mbKitL targeted vaccination is an effective means of inhibiting tumour angiogenesis and growth.


OncoImmunology | 2015

Antitumor immunization of mothers delays tumor development in cancer-prone offspring

Giuseppina Barutello; Claudia Curcio; Michela Spadaro; Maddalena Arigoni; Rosalinda Trovato; Elisabetta Bolli; Yujuan Zheng; Francesco Ria; Elena Quaglino; Manuela Iezzi; Federica Riccardo; Lars Holmgren; Guido Forni; Federica Cavallo

Maternal immunization is successfully applied against some life-threatening infectious diseases as it can protect the mother and her offspring through the passive transfer of maternal antibodies. Here, we sought to evaluate whether the concept of maternal immunization could also be applied to cancer immune-prevention. We have previously shown that antibodies induced by DNA vaccination against rat Her2 (neu) protect heterozygous neu-transgenic female (BALB-neuT) mice from autochthonous mammary tumor development. We, herein, seek to evaluate whether a similar maternal immunization can confer antitumor protection to BALB-neuT offspring. Significantly extended tumor-free survival was observed in BALB-neuT offspring born and fed by mothers vaccinated against neu, as compared to controls. Maternally derived anti-neu immunoglobulin G (IgG) was successfully transferred from mothers to newborns and was responsible for the protective effect. Vaccinated mothers and offspring also developed active immunity against neu as revealed by the presence of T–cell-mediated cytotoxicity against the neu immunodominant peptide. This active response was due to the milk transfer of immune complexes that were formed between the neu extracellular domain, shed from vaccine-transfected muscle cells, and the anti-neu IgG induced by the vaccine. These findings show that maternal immunization has the potential to hamper mammary cancer in genetically predestinated offspring and to develop into applications against lethal neonatal cancer diseases for which therapeutic options are currently unavailable.


OncoImmunology | 2018

A Virus-Like-Particle immunotherapy targeting Epitope-Specific anti-xCT expressed on cancer stem cell inhibits the progression of metastatic cancer in vivo

Elisabetta Bolli; John O'Rourke; Laura Conti; Stefania Lanzardo; Valeria Rolih; Jayne M. Christen; Giuseppina Barutello; Marco Forni; Federica Pericle; Federica Cavallo

ABSTRACT Aggressive forms of breast cancer, such as Her2+ and triple negative breast cancer (TNBC), are enriched in breast cancer stem cells (BCSC) and have limited therapeutic options. BCSC represent a key cellular reservoir for relapse, metastatic progression and therapeutic resistance. Their ability to resist common cytotoxic therapies relies on different mechanisms, including improved detoxification. The cystine-glutamate antiporter protein xCT (SLC7A11) regulates cystine intake, conversion to cysteine and subsequent glutathione synthesis, protecting cells against oxidative and chemical insults. Our previous work showed that xCT is highly expressed in tumorspheres derived from breast cancer cell lines and downregulation of xCT altered BCSC function in vitro and inhibited pulmonary metastases in vivo. We further strengthened these observations by developing a virus-like-particle (VLP; AX09-0M6) immunotherapy targeting the xCT protein. AX09-0M6 elicited a strong antibody response against xCT including high levels of IgG2a antibody. IgG isolated from AX09-0M6 treated mice bound to tumorspheres, inhibited xCT function as assessed by reactive oxygen species generation and decreased BCSC growth and self-renewal. To assess if AX09-0M6 impacts BCSC in vivo seeding, Her2+ TUBO-derived tumorspheres were injected into the tail vein of AX09-0M6 or control treated female BALB/c mice. AX09-0M6 significantly inhibited formation of pulmonary nodules. To evaluate its ability to impact metastases, AX09-0M6 was administered to mice with established subcutaneous 4T1 tumors. AX09-0M6 administration significantly hampered tumor growth and development of pulmonary metastases. These data show that a VLP-based immunization approach inhibits xCT activity, impacts BCSC biology and significantly reduces metastatic progression in preclinical models.


Journal of Translational Medicine | 2017

CSPG4: a prototype oncoantigen for translational immunotherapy studies

Valeria Rolih; Giuseppina Barutello; Selina Iussich; Raffaella De Maria; Elena Quaglino; Paolo Buracco; Federica Cavallo; Federica Riccardo

Thanks to striking progress in both the understanding of anti-tumor immune response and the characterization of several tumor associated antigens (TAA), a more rational design and more sophisticated strategies for anti-tumor vaccination have been possible. However, the effectiveness of cancer vaccines in clinical trial is still partial, indicating that additional studies are needed to optimize their design and their pre-clinical testing. Indeed, anti-tumor vaccination success relies on the choice of the best TAA to be targeted and on the translational power of the pre-clinical model used to assess its efficacy. The chondroitin sulfate proteoglycan-4 (CSPG4) is a cell surface proteoglycan overexpressed in a huge range of human and canine neoplastic lesions by tumor cells, tumor microenvironment and cancer initiating cells. CSPG4 plays a central role in the oncogenic pathways required for malignant progression and metastatization. Thanks to these features and to its poor expression in adult healthy tissues, CSPG4 represents an ideal oncoantigen and thus an attractive target for anti-tumor immunotherapy. In this review we explore the potential of CSPG4 immune-targeting. Moreover, since it has been clearly demonstrated that spontaneous canine tumors mimic the progression of human malignancies better than any other pre-clinical model available so far, we reported also our results indicating that CSPG4 DNA vaccination is safe and effective in significantly increasing the survival of canine melanoma patients. Therefore, anti-CSPG4 vaccination strategy could have a substantial impact for the treatment of the wider population of spontaneous CSPG4-positive tumor affected dogs with a priceless translational value and a revolutionary implication for human oncological patients.


Cancer Immunology, Immunotherapy | 2018

Fighting breast cancer stem cells through the immune-targeting of the xCT cystine–glutamate antiporter

Roberto Ruiu; Valeria Rolih; Elisabetta Bolli; Giuseppina Barutello; Federica Riccardo; Elena Quaglino; Irene Fiore Merighi; Federica Pericle; Gaetano Donofrio; Federica Cavallo; Laura Conti

Tumor relapse and metastatic spreading act as major hindrances to achieve complete cure of breast cancer. Evidence suggests that cancer stem cells (CSC) would function as a reservoir for the local and distant recurrence of the disease, due to their resistance to radio- and chemotherapy and their ability to regenerate the tumor. Therefore, the identification of appropriate molecular targets expressed by CSC may be critical in the development of more effective therapies. Our studies focused on the identification of mammary CSC antigens and on the development of CSC-targeting vaccines. We compared the transcriptional profile of CSC-enriched tumorspheres from an Her2+ breast cancer cell line with that of the more differentiated parental cells. Among the molecules strongly upregulated in tumorspheres we selected the transmembrane amino-acid antiporter xCT. In this review, we summarize the results we obtained with different xCT-targeting vaccines. We show that, despite xCT being a self-antigen, vaccination was able to induce a humoral immune response that delayed primary tumor growth and strongly impaired pulmonary metastasis formation in mice challenged with tumorsphere-derived cells. Moreover, immunotargeting of xCT was able to increase CSC chemosensitivity to doxorubicin, suggesting that it may act as an adjuvant to chemotherapy. In conclusion, our approach based on the comparison of the transcriptome of tumorspheres and parental cells allowed us to identify a novel CSC-related target and to develop preclinical therapeutic approaches able to impact on CSC biology, and therefore, hampering tumor growth and dissemination.

Collaboration


Dive into the Giuseppina Barutello's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge