Felix Broecker
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Felix Broecker.
Journal of the American Chemical Society | 2013
Christopher E. Martin; Felix Broecker; Matthias A. Oberli; Julia Komor; Jochen Mattner; Chakkumkal Anish; Peter H. Seeberger
Clostridium difficile is the cause of emerging nosocomial infections that result in abundant morbidity and mortality worldwide. Thus, the development of a vaccine to kill the bacteria to prevent this disease is highly desirable. Several recently identified bacterial surface glycans, such as PS-I and PS-II, are promising vaccine candidates to preclude C. difficile infection. To circumvent difficulties with the generation of natural PS-I due to its low expression levels in bacterial cultures, improved chemical synthesis protocols for the pentasaccharide repeating unit of PS-I and oligosaccharide substructures were utilized to produce large quantities of well-defined PS-I related glycans. The analysis of stool and serum samples obtained from C. difficile patients using glycan microarrays of synthetic oligosaccharide epitopes revealed humoral immune responses to the PS-I related glycan epitopes. Two different vaccine candidates were evaluated in the mouse model. A synthetic PS-I repeating unit CRM197 conjugate was immunogenic in mice and induced immunoglobulin class switching as well as affinity maturation. Microarray screening employing PS-I repeating unit substructures revealed the disaccharide Rha-(1→3)-Glc as a minimal epitope. A CRM197-Rha-(1→3)-Glc disaccharide conjugate was able to elicit antibodies recognizing the C. difficile PS-I pentasaccharide. We herein demonstrate that glycan microarrays exposing defined oligosaccharide epitopes help to determine the minimal immunogenic epitopes of complex oligosaccharide antigens. The synthetic PS-I pentasaccharide repeating unit as well as the Rha-(1→3)-Glc disaccharide are promising novel vaccine candidates against C. difficile that are currently in preclinical evaluation.
Journal of Virology | 2014
Mario Mietzsch; Felix Broecker; Anika Reinhardt; Peter H. Seeberger; Regine Heilbronn
ABSTRACT All currently identified primary receptors of adeno-associated virus (AAV) are glycans. Depending on the AAV serotype, these carbohydrates range from heparan sulfate proteoglycans (HSPG), through glycans with terminal α2-3 or α2-6 sialic acids, to terminal galactose moieties. Receptor identification has largely relied on binding to natural compounds, defined glycan-presenting cell lines, or enzyme-mediated glycan modifications. Here, we describe a comparative binding analysis of highly purified, fluorescent-dye-labeled AAV vectors of various serotypes on arrays displaying over 600 different glycans and on a specialized array with natural and synthetic heparins. Few glycans bind AAV specifically in a serotype-dependent manner. Differential glycan binding was detected for the described sialic acid-binding AAV serotypes 1, 6, 5, and 4. The natural heparin binding serotypes AAV2, -3, -6, and -13 displayed differential binding to selected synthetic heparins. AAV7, -8, -rh.10, and -12 did not bind to any of the glycans present on the arrays. For discrimination of AAV serotypes 1 to 6 and 13, minimal binding moieties are identified. This is the first study to differentiate the natural mixed heparin binding AAV serotypes 2, 3, 6, and 13 by differential binding to specific synthetic heparins. Also, sialic acid binding AAVs display differential glycan binding specificities. The findings are relevant for further dissection of AAV host cell interaction. Moreover, the definition of single AAV-discriminating glycan binders opens the possibility for glycan microarray-based discrimination of AAV serotypes in gene therapy.
Chemical Communications | 2013
Christopher E. Martin; Felix Broecker; Steffen Eller; Matthias A. Oberli; Chakkumkal Anish; Claney L. Pereira; Peter H. Seeberger
Clostridium difficile is a leading cause of severe nosocomial infections. Cell-surface carbohydrate antigens are promising vaccine candidates. Here we report the first total synthesis of oligomers of the lipoteichoic acid antigen repeating unit. Synthetic glycan microarrays revealed anti-glycan antibodies in the blood of patients that help to define epitopes for vaccine development.
Nature Communications | 2016
Felix Broecker; Jonas Hanske; Christopher E. Martin; Ju Yuel Baek; Annette Wahlbrink; Felix Wojcik; Laura Hartmann; Christoph Rademacher; Chakkumkal Anish; Peter H. Seeberger
Synthetic cell-surface glycans are promising vaccine candidates against Clostridium difficile. The complexity of large, highly antigenic and immunogenic glycans is a synthetic challenge. Less complex antigens providing similar immune responses are desirable for vaccine development. Based on molecular-level glycan–antibody interaction analyses, we here demonstrate that the C. difficile surface polysaccharide-I (PS-I) can be resembled by multivalent display of minimal disaccharide epitopes on a synthetic scaffold that does not participate in binding. We show that antibody avidity as a measure of antigenicity increases by about five orders of magnitude when disaccharides are compared with constructs containing five disaccharides. The synthetic, pentavalent vaccine candidate containing a peptide T-cell epitope elicits weak but highly specific antibody responses to larger PS-I glycans in mice. This study highlights the potential of multivalently displaying small oligosaccharides to achieve antigenicity characteristic of larger glycans. The approach may result in more cost-efficient carbohydrate vaccines with reduced synthetic effort.
Digestion | 2013
Felix Broecker; Michael Kube; Jochen Klumpp; Markus Schuppler; Luc Biedermann; Jochen Hecht; Michael Hombach; Peter M. Keller; Gerhard Rogler; Karin Moelling
Background:Clostridium difficile infections upon antibiotic disruption of the gut microbiota are potentially lethal. Fecal microbiota transplantation (FMT) is a promising treatment option for recurrent C. difficile-associated disease (CDAD). Here, we present a patient with recurrent CDAD that received FMT, leading to full recovery for what has now been 3 years. We performed metagenomic sequencing on stool samples to assess if there are indications for recolonization with C. difficile and changes in the gut microbiota after FMT. Methods: DNA from the stool of the donor and recipient was subjected to illumina sequencing. Obtained read sets were assembled to contiguous sequences and open reading frames were predicted. Deduced proteins were taxonomically assigned. Results: We detected complex and apparently healthy microbiomes in the donors and recipients intestines after FMT, but no indications for C. difficile colonization. Conclusions: Metagenomic analysis proved suitable to analyze the intestinal microbiome after FMT. Discussion of our evaluation procedure and data management may be helpful for future studies. We demonstrated restoration of a healthy and diverse gut microbiome with chimeric composition from donor and recipient, and long-lasting clearance of C. difficile. The procedure is simple, cheap, caused no side effects, and was stable over 3 years.
Cold Spring Harb Mol Case Stud | 2016
Felix Broecker; Jochen Klumpp; Markus Schuppler; Giancarlo Russo; Luc Biedermann; Michael Hombach; Gerhard Rogler; Karin Moelling
Fecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infections (RCDIs). However, long-term effects on the patients’ gut microbiota and the role of viruses remain to be elucidated. Here, we characterized bacterial and viral microbiota in the feces of a cured RCDI patient at various time points until 4.5 yr post-FMT compared with the stool donor. Feces were subjected to DNA sequencing to characterize bacteria and double-stranded DNA (dsDNA) viruses including phages. The patients microbial communities varied over time and showed little overall similarity to the donor until 7 mo post-FMT, indicating ongoing gut microbiota adaption in this time period. After 4.5 yr, the patients bacteria attained donor-like compositions at phylum, class, and order levels with similar bacterial diversity. Differences in the bacterial communities between donor and patient after 4.5 yr were seen at lower taxonomic levels. C. difficile remained undetectable throughout the entire timespan. This demonstrated sustainable donor feces engraftment and verified long-term therapeutic success of FMT on the molecular level. Full engraftment apparently required longer than previously acknowledged, suggesting the implementation of year-long patient follow-up periods into clinical practice. The identified dsDNA viruses were mainly Caudovirales phages. Unexpectedly, sequences related to giant algae–infecting Chlorella viruses were also detected. Our findings indicate that intestinal viruses may be implicated in the establishment of gut microbiota. Therefore, virome analyses should be included in gut microbiota studies to determine the roles of phages and other viruses—such as Chlorella viruses—in human health and disease, particularly during RCDI.
Annals of the New York Academy of Sciences | 2015
Karin Moelling; Felix Broecker
Ubiquitous, reverse transcriptase may have contributed to the transition from the RNA to the DNA world, a transition that also involved RNase H–like activities. Both enzymes shaped various genomes and antiviral defense systems as endogenous retroviruses (ERVs) and transposable elements (TEs). A close relationship between a dozen components of retroviruses and the small interfering RNA (siRNA) antiviral‐defense machinery has been characterized. Most antiviral‐defense systems involve RNase H–like enzymes destroying invading nucleic acids, RNA, or DNA. Such enzymes include RNases H, Argonaute, Dicer, Cas9, transposases, integrases, and enzymes for immunoglobulin rearrangement and splicing. Even in mammalian cells, where protein‐based defense dominates, the siRNA machinery remains active, demonstrated by increased virus production and apoptosis after Dicer knockdown. We have noticed a surprising homology between the siRNA silencing system and the interferon response, as well as to siDNA and the CRISPR system. Further, ERVs serve in defense, in addition to having roles in gene regulation and cancer.
ACS Chemical Biology | 2014
Felix Broecker; Jonas Aretz; You Yang; Jonas Hanske; Xiaoqiang Guo; Anika Reinhardt; Annette Wahlbrink; Christoph Rademacher; Chakkumkal Anish; Peter H. Seeberger
Today, the process of selecting carbohydrate antigens as a basis for active vaccination and the generation of antibodies for therapeutic and diagnostic purposes is based on intuition combined with trial and error experiments. In efforts to establish a rational process for glycan epitope selection, we employed glycan array screening, surface plasmon resonance, and saturation transfer difference (STD)-NMR to elucidate the interactions between antibodies and glycans representing the Yersinia pestis lipopolysaccharide (LPS). A trisaccharide epitope of the LPS inner core glycan and different LPS-derived oligosaccharides from various Gram-negative bacteria were analyzed using this combination of techniques. The antibody-glycan interaction with a heptose substructure was determined at atomic-level detail. Antibodies specifically recognize the Y. pestis trisaccharide and some substructures with high affinity and specificity. No significant binding to LPS glycans from other bacteria was observed, which suggests that the epitopes for just one particular bacterial species can be identified. On the basis of these results we are beginning to understand the rules for structure-based design and selection of carbohydrate antigens.
Scientific Reports | 2016
Uwe Möginger; Anja Resemann; Christopher E. Martin; Sharavathi Guddehalli Parameswarappa; Subramanian Govindan; Eike-Christian Wamhoff; Felix Broecker; Detlev Suckau; Claney L. Pereira; Anish Chakkumkal; Peter H. Seeberger; Daniel Kolarich
Production of glycoconjugate vaccines involves the chemical conjugation of glycans to an immunogenic carrier protein such as Cross-Reactive-Material-197 (CRM197). Instead of using glycans from natural sources recent vaccine development has been focusing on the use of synthetically defined minimal epitopes. While the glycan is structurally defined, the attachment sites on the protein are not. Fully characterized conjugates and batch-to-batch comparisons are the key to eventually create completely defined conjugates. A variety of glycoconjugates consisting of CRM197 and synthetic oligosaccharide epitopes was characterised using mass spectrometry techniques. The primary structure was assessed by combining intact protein MALDI-TOF-MS, LC-MALDI-TOF-MS middle-down and LC-ESI-MS bottom-up approaches. The middle-down approach on CNBr cleaved glycopeptides provided almost complete sequence coverage, facilitating rapid batch-to-batch comparisons, resolving glycan loading and identification of side products. Regions close to the N- and C-termini were most efficiently conjugated.
Annals of the New York Academy of Sciences | 2016
Felix Broecker; Jochen Klumpp; Karin Moelling
Fecal microbiota transplantation (FMT) is an emerging therapeutic option for Clostridium difficile infections that are refractory to conventional treatment. FMT introduces fecal microbes into the patients intestine that prevent the recurrence of C. difficile, leading to rapid expansion of bacteria characteristic of healthy microbiota. However, the long‐term effects of FMT remain largely unknown. The C. difficile patient described in this paper revealed protracted microbiota adaptation processes from 6 to 42 months post‐FMT. Ultimately, bacterial communities were donor similar, suggesting sustainable stool engraftment. Since little is known about the consequences of transmitted viruses during C. difficile infection, we also interrogated virome changes. Our approach allowed identification of about 10 phage types per sample that represented larger viral communities, and phages were found to be equally abundant in the cured patient and donor. The healthy microbiota appears to be characterized by low phage abundance. Although viruses were likely transferred, the patient established a virome distinct from the donor. Surprisingly, the patient had sequences of algal giant viruses (chloroviruses) that have not previously been reported for the human gut. Chloroviruses have not been associated with intestinal disease, but their presence in the oropharynx may influence cognitive abilities. The findings suggest that the virome is an important indicator of health or disease. A better understanding of the role of viruses in the gut ecosystem may uncover novel microbiota‐modulating therapeutic strategies.