Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viviana Simon is active.

Publication


Featured researches published by Viviana Simon.


Nature Methods | 2005

Identification of microRNAs of the herpesvirus family

Sébastien Pfeffer; Alain Sewer; Mariana Lagos-Quintana; Robert L. Sheridan; Chris Sander; Friedrich A. Grässer; Linda F. van Dyk; C. Kiong Ho; Stewart Shuman; Minchen Chien; James J. Russo; Jingyue Ju; Glenn Randall; Brett D. Lindenbach; Charles M. Rice; Viviana Simon; David D. Ho; Mihaela Zavolan; Thomas Tuschl

Epstein-Barr virus (EBV or HHV4), a member of the human herpesvirus (HHV) family, has recently been shown to encode microRNAs (miRNAs). In contrast to most eukaryotic miRNAs, these viral miRNAs do not have close homologs in other viral genomes or in the genome of the human host. To identify other miRNA genes in pathogenic viruses, we combined a new miRNA gene prediction method with small-RNA cloning from several virus-infected cell types. We cloned ten miRNAs in the Kaposi sarcoma–associated virus (KSHV or HHV8), nine miRNAs in the mouse gammaherpesvirus 68 (MHV68) and nine miRNAs in the human cytomegalovirus (HCMV or HHV5). These miRNA genes are expressed individually or in clusters from either polymerase (pol) II or pol III promoters, and share no substantial sequence homology with one another or with the known human miRNAs. Generally, we predicted miRNAs in several large DNA viruses, and we could neither predict nor experimentally identify miRNAs in the genomes of small RNA viruses or retroviruses.


The Lancet | 2006

HIV/AIDS epidemiology, pathogenesis, prevention, and treatment.

Viviana Simon; David D. Ho; Quarraisha Abdool Karim

The HIV-1 pandemic is a complex mix of diverse epidemics within and between countries and regions of the world, and is undoubtedly the defining public-health crisis of our time. Research has deepened our understanding of how the virus replicates, manipulates, and hides in an infected person. Although our understanding of pathogenesis and transmission dynamics has become more nuanced and prevention options have expanded, a cure or protective vaccine remains elusive. Antiretroviral treatment has transformed AIDS from an inevitably fatal condition to a chronic, manageable disease in some settings. This transformation has yet to be realised in those parts of the world that continue to bear a disproportionate burden of new HIV-1 infections and are most affected by increasing morbidity and mortality. This Seminar provides an update on epidemiology, pathogenesis, treatment, and prevention interventions pertinent to HIV-1.


PLOS Pathogens | 2012

DENV Inhibits Type I IFN Production in Infected Cells by Cleaving Human STING

Sebastian Aguirre; Ana M. Maestre; Sarah Pagni; Jenish R. Patel; Timothy Savage; Delia Gutman; Kevin Maringer; Dabeiba Bernal-Rubio; Reed S. Shabman; Viviana Simon; Juan R. Rodriguez-Madoz; Lubbertus C. F. Mulder; Glen N. Barber; Ana Fernandez-Sesma

Dengue virus (DENV) is a pathogen with a high impact on human health. It replicates in a wide range of cells involved in the immune response. To efficiently infect humans, DENV must evade or inhibit fundamental elements of the innate immune system, namely the type I interferon response. DENV circumvents the host immune response by expressing proteins that antagonize the cellular innate immunity. We have recently documented the inhibition of type I IFN production by the proteolytic activity of DENV NS2B3 protease complex in human monocyte derived dendritic cells (MDDCs). In the present report we identify the human adaptor molecule STING as a target of the NS2B3 protease complex. We characterize the mechanism of inhibition of type I IFN production in primary human MDDCs by this viral factor. Using different human and mouse primary cells lacking STING, we show enhanced DENV replication. Conversely, mutated versions of STING that cannot be cleaved by the DENV NS2B3 protease induced higher levels of type I IFN after infection with DENV. Additionally, we show that DENV NS2B3 is not able to degrade the mouse version of STING, a phenomenon that severely restricts the replication of DENV in mouse cells, suggesting that STING plays a key role in the inhibition of DENV infection and spread in mice.


PLOS Pathogens | 2011

SAMHD1-Deficient CD14+ Cells from Individuals with Aicardi-Goutieres Syndrome Are Highly Susceptible to HIV-1 Infection

André Berger; Andreas F. R. Sommer; Jenny Zwarg; Matthias Hamdorf; Karin Welzel; Nicole Esly; Sylvia Panitz; Andreas Reuter; Irene Ramos; Asavari Jatiani; Lubbertus C. F. Mulder; Ana Fernandez-Sesma; Frank Rutsch; Viviana Simon; Renate König; Egbert Flory

Myeloid blood cells are largely resistant to infection with human immunodeficiency virus type 1 (HIV-1). Recently, it was reported that Vpx from HIV-2/SIVsm facilitates infection of these cells by counteracting the host restriction factor SAMHD1. Here, we independently confirmed that Vpx interacts with SAMHD1 and targets it for ubiquitin-mediated degradation. We found that Vpx-mediated SAMHD1 degradation rendered primary monocytes highly susceptible to HIV-1 infection; Vpx with a T17A mutation, defective for SAMHD1 binding and degradation, did not show this activity. Several single nucleotide polymorphisms in the SAMHD1 gene have been associated with Aicardi-Goutières syndrome (AGS), a very rare and severe autoimmune disease. Primary peripheral blood mononuclear cells (PBMC) from AGS patients homozygous for a nonsense mutation in SAMHD1 (R164X) lacked endogenous SAMHD1 expression and support HIV-1 replication in the absence of exogenous activation. Our results indicate that within PBMC from AGS patients, CD14+ cells were the subpopulation susceptible to HIV-1 infection, whereas cells from healthy donors did not support infection. The monocytic lineage of the infected SAMHD1 -/- cells, in conjunction with mostly undetectable levels of cytokines, chemokines and type I interferon measured prior to infection, indicate that aberrant cellular activation is not the cause for the observed phenotype. Taken together, we propose that SAMHD1 protects primary CD14+ monocytes from HIV-1 infection confirming SAMHD1 as a potent lentiviral restriction factor.


Journal of Acquired Immune Deficiency Syndromes | 2006

Tracking the prevalence of transmitted antiretroviral drug-resistant HIV-1: a decade of experience.

Anita Shet; Leslie Berry; Hiroshi Mohri; Saurabh Mehandru; Chris Chung; Alexandria Kim; Patrick Jean-Pierre; Christine Hogan; Viviana Simon; Daniel Boden; Martin Markowitz

Summary: Transmitted resistance to antiretroviral drugs in acute and early HIV-1 infection has been well documented, although overall trends vary depending on geography and cohort characteristics. To describe the changing pattern of transmitted drug-resistant HIV-1 in a well-defined cohort in New York City, a total of 361 patients with acute or recent HIV-1 infection were prospectively studied over a decade (1995-2004) with respect to HIV-1 genotypes and longitudinal T-cell subsets and HIV-1 RNA levels. The prevalence of overall transmitted resistance changed from 13.2% to 24.1% (P = 0.11) during the periods 1995 to 1998 and 2003 to 2004. Nonnucleoside reverse transcriptase inhibitor resistance prevalence increased significantly from 2.6% to 13.4% (P = 0.007) during the same periods, whereas prevalence of multidrug-resistant virus shifted from 2.6% to 9.8% (P = 0.07) but did not achieve statistical significance. A comparable immunologic and virologic response of appropriately treated individuals was observed regardless of viral drug susceptibility status, suggesting that initial combination therapy guided by baseline resistance testing in the case of acute and early infection may result in a favorable treatment response even in the case of a drug-resistant virus. These data have important implications for selection of empiric first-line regimens for treatment of acutely infected antiretroviral-naive individuals and reinforce the need for baseline resistance testing in acute and early HIV-1 infection.


The Journal of Infectious Diseases | 2002

Discontinuation of antiretroviral therapy commenced early during the course of human immunodeficiency virus type 1 infection, with or without adjunctive vaccination.

Martin Markowitz; Xia Jin; Arlene Hurley; Viviana Simon; Bharat Ramratnam; Michael Louie; Geoffrey R. Deschenes; Murugappan Ramanathan; Shady Barsoum; Jeroen Vanderhoeven; Tian He; Chris Chung; John M. Murray; Alan S. Perelson; Linqi Zhang; David D. Ho

Sixteen subjects were treated with highly active antiretroviral therapy within 120 days of the onset of symptoms of newly acquired human immunodeficiency virus type 1 (HIV-1) infection. Eleven of the 16 participated in an adjunctive therapeutic vaccine trial. After a mean of 3.2 years of treatment, they elected to discontinue therapy. Virus rebound occurred in all subjects and was followed by a spontaneous, transient although significant reduction in log plasma HIV-1 RNA level, ranging from 0.3 to 3.1 log(10) copies/mL. Despite evidence of the induction of HIV-1-specific cell-mediated immune responses, plasma viremia was not persistently suppressed to <500 copies/mL in any subject. The magnitude and dynamics of virus rebound were similar in both vaccinated and unvaccinated subjects. Nevertheless, given the transient suppression of viremia observed in nearly all subjects after treatment has been discontinued, further investigations of adjunctive vaccination with optimized antiretroviral therapy in treating HIV-1 infection are warranted.


Nature Reviews Microbiology | 2003

HIV-1 dynamics in vivo : implications for therapy

Viviana Simon; David D. Ho

The advent of potent combination antiretroviral therapy has been an important breakthrough in the treatment of HIV-1 infection, resulting in marked reductions in HIV-1-related morbidity and mortality. Antiretroviral therapy has also provided researchers with a powerful tool to perturb the equilibrium of viral production and viral clearance, allowing them to dissect the underlying dynamics that control the pathogenesis of AIDS. Here, we review our current understanding of the sources of HIV-1 production, the estimates for the virion and the host-cell half-lives, and the pathways of virion trafficking and clearance. We also discuss the obstacles that result from the ability of HIV-1 to remain dormant for a prolonged period of time in a subset of long-lived cells, despite an apparently effective antiretroviral treatment.


Nature Immunology | 2015

Intrinsic host restrictions to HIV-1 and mechanisms of viral escape

Viviana Simon; Nicolin Bloch; Nathaniel R. Landau

To replicate in their hosts, viruses have to navigate the complexities of the mammalian cell, co-opting mechanisms of cellular physiology while defeating restriction factors that are dedicated to halting their progression. Primate lentiviruses devote a relatively large portion of their coding capacity to counteracting restriction factors by encoding accessory proteins dedicated to neutralizing the antiviral function of these intracellular inhibitors. Research into the roles of the accessory proteins has revealed the existence of previously undetected intrinsic defenses, provided insight into the evolution of primate lentiviruses as they adapt to new species and uncovered new targets for the development of therapeutics. This Review discusses the biology of the restriction factors APOBEC3, SAMHD1 and tetherin and the viral accessory proteins that counteract them.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Cytidine deamination induced HIV-1 drug resistance

Lubbertus C. F. Mulder; Ariana Harari; Viviana Simon

The HIV-1 Vif protein is essential for overcoming the antiviral activity of DNA-editing apolipoprotein B mRNA editing enzyme, catalytic polypeptide 3 (APOBEC3) cytidine deaminases. We show that naturally occurring HIV-1 Vif point mutants with suboptimal anti-APOBEC3G activity induce the appearance of proviruses with lamivudine (3TC) drug resistance-associated mutations before any drug exposure. These mutations, ensuing from cytidine deamination events, were detected in >40% of proviruses with partially defective Vif mutants. Transfer of drug resistance from hypermutated proviruses via recombination allowed for 3TC escape under culture conditions prohibitive for any WT viral growth. These results demonstrate that defective hypermutated genomes can shape the phenotype of the circulating viral population. Partially active Vif alleles resulting in incomplete neutralization of cytoplasmic APOBEC3 molecules are directly responsible for the generation of a highly diverse, yet G-to-A biased, proviral reservoir, which can be exploited by HIV-1 to generate viable and drug-resistant progenies.


Journal of Virology | 2009

Polymorphisms and Splice Variants Influence the Antiretroviral Activity of Human APOBEC3H

Ariana Harari; Marcel Ooms; Lubbertus C. F. Mulder; Viviana Simon

ABSTRACT Human APOBEC3H belongs to the APOBEC3 family of cytidine deaminases that potently inhibit exogenous and endogenous retroviruses. The impact of single nucleotide polymorphisms (SNP) and alternative splicing on the antiretroviral activity of human APOBEC3H is currently unknown. In this study, we show that APOBEC3H transcripts derived from human peripheral blood mononuclear cells are polymorphic in sequence and subject to alternative splicing. We found that APOBEC3H variants encoding a SNP cluster (G105R, K121D and E178D, hapII-RDD) restricted human immunodeficiency virus type 1 (HIV-1) more efficiently than wild-type APOBEC3H (hapI-GKE). All APOBEC3H variants tested were resistant to HIV-1 Vif, the viral protein that efficiently counteracts APOBEC3G/3F activity. Alternative splicing of APOBEC3H was common and resulted in variants with distinct C-terminal regions and variable antiretroviral activities. Splice variants of hapI-GKE displayed a wide range of antiviral activities, whereas similar splicing events in hapII-RDD resulted in proteins that uniformly and efficiently restricted viral infectivity (>20-fold). Site-directed mutagenesis identified G105R in hapI-GKE and D121K in hapII-RDD as critical substitutions leading to an average additional 10-fold increase in antiviral activity. APOBEC3H variants were catalytically active and, similarly to APOBEC3F, favored a GA dinucleotide context. HIV-1 mutagenesis as a mode of action for APOBEC3H is suggested by the decrease of restriction observed with a cytidine deaminase domain mutant and the inverse correlation between G-to-A mutations and infectivity. Thus, the anti-HIV activity of APOBEC3H seems to be regulated by a combination of genomic variation and alternative splicing. Since prevalence of hapII-RDD is high in populations of African descent, these findings raise the possibility that some individuals may harbor effective as well as HIV-1 Vif-resistant intracellular antiviral defense mechanisms.

Collaboration


Dive into the Viviana Simon's collaboration.

Top Co-Authors

Avatar

Marcel Ooms

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lubbertus C. F. Mulder

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Ana Fernandez-Sesma

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Lara Manganaro

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Martin Markowitz

Aaron Diamond AIDS Research Center

View shared research outputs
Top Co-Authors

Avatar

Michael Letko

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

David D. Ho

Aaron Diamond AIDS Research Center

View shared research outputs
Top Co-Authors

Avatar

Ana M. Maestre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Adolfo García-Sastre

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge