Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ferenc Reinhardt is active.

Publication


Featured researches published by Ferenc Reinhardt.


Cell | 2009

A Pleiotropically Acting MicroRNA, miR-31, Inhibits Breast Cancer Metastasis

Scott Valastyan; Ferenc Reinhardt; Nathan Benaich; Diana Calogrias; Attila M. Szász; Zhigang C. Wang; Jane E. Brock; Andrea L. Richardson; Robert A. Weinberg

MicroRNAs are well suited to regulate tumor metastasis because of their capacity to coordinately repress numerous target genes, thereby potentially enabling their intervention at multiple steps of the invasion-metastasis cascade. We identify a microRNA exemplifying these attributes, miR-31, whose expression correlates inversely with metastasis in human breast cancer patients. Overexpression of miR-31 in otherwise-aggressive breast tumor cells suppresses metastasis. We deploy a stable microRNA sponge strategy to inhibit miR-31 in vivo; this allows otherwise-nonaggressive breast cancer cells to metastasize. These phenotypes do not involve confounding influences on primary tumor development and are specifically attributable to miR-31-mediated inhibition of several steps of metastasis, including local invasion, extravasation or initial survival at a distant site, and metastatic colonization. Such pleiotropy is achieved via coordinate repression of a cohort of metastasis-promoting genes, including RhoA. Indeed, RhoA re-expression partially reverses miR-31-imposed metastasis suppression. These findings indicate that miR-31 uses multiple mechanisms to oppose metastasis.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state

Christine L. Chaffer; Ines Brueckmann; Christina Scheel; Alicia J. Kaestli; Paul A. Wiggins; Leonardo O. Rodrigues; Mary W. Brooks; Ferenc Reinhardt; Ying Su; Kornelia Polyak; Lisa M. Arendt; Charlotte Kuperwasser; Brian Bierie; Robert A. Weinberg

Current models of stem cell biology assume that normal and neoplastic stem cells reside at the apices of hierarchies and differentiate into nonstem progeny in a unidirectional manner. Here we identify a subpopulation of basal-like human mammary epithelial cells that departs from that assumption, spontaneously dedifferentiating into stem-like cells. Moreover, oncogenic transformation enhances the spontaneous conversion, so that nonstem cancer cells give rise to cancer stem cell (CSC)-like cells in vitro and in vivo. We further show that the differentiation state of normal cells-of-origin is a strong determinant of posttransformation behavior. These findings demonstrate that normal and CSC-like cells can arise de novo from more differentiated cell types and that hierarchical models of mammary stem cell biology should encompass bidirectional interconversions between stem and nonstem compartments. The observed plasticity may allow derivation of patient-specific adult stem cells without genetic manipulation and holds important implications for therapeutic strategies to eradicate cancer.


Nature Biotechnology | 2010

Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model

Li Ma; Ferenc Reinhardt; Elizabeth Pan; Jürgen Soutschek; Balkrishen Bhat; Eric G. Marcusson; Julie Teruya-Feldstein; George W. Bell; Robert A. Weinberg

MicroRNAs (miRNAs) are increasingly implicated in the regulation of metastasis. Despite their potential as targets for anti-metastatic therapy, miRNAs have only been silenced in normal tissues of rodents and nonhuman primates. Therefore, the development of effective approaches for sequence-specific inhibition of miRNAs in tumors remains a scientific and clinical challenge. Here we show that systemic treatment of tumor-bearing mice with miR-10b antagomirs—a class of chemically modified anti-miRNA oligonucleotide—suppresses breast cancer metastasis. Both in vitro and in vivo, silencing of miR-10b with antagomirs significantly decreases miR-10b levels and increases the levels of a functionally important miR-10b target, Hoxd10. Administration of miR-10b antagomirs to mice bearing highly metastatic cells does not reduce primary mammary tumor growth but markedly suppresses formation of lung metastases in a sequence-specific manner. The miR-10b antagomir, which is well tolerated by normal animals, appears to be a promising candidate for the development of new anti-metastasis agents.


Cell | 2011

Paracrine and autocrine signals induce and maintain mesenchymal and stem cell states in the breast.

Christina Scheel; Elinor Ng Eaton; Sophia Li; Christine L. Chaffer; Ferenc Reinhardt; Kong Jie Kah; George W. Bell; Wenjun Guo; Jeffrey S. Rubin; Andrea L. Richardson; Robert A. Weinberg

The epithelial-mesenchymal transition (EMT) has been associated with the acquisition of motility, invasiveness, and self-renewal traits. During both normal development and tumor pathogenesis, this change in cell phenotype is induced by contextual signals that epithelial cells receive from their microenvironment. The signals that are responsible for inducing an EMT and maintaining the resulting cellular state have been unclear. We describe three signaling pathways, involving transforming growth factor (TGF)-β and canonical and noncanonical Wnt signaling, that collaborate to induce activation of the EMT program and thereafter function in an autocrine fashion to maintain the resulting mesenchymal state. Downregulation of endogenously synthesized inhibitors of autocrine signals in epithelial cells enables the induction of the EMT program. Conversely, disruption of autocrine signaling by added inhibitors of these pathways inhibits migration and self-renewal in primary mammary epithelial cells and reduces tumorigenicity and metastasis by their transformed derivatives.


Cell | 2013

Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity.

Christine L. Chaffer; Nemanja D. Marjanovic; Tony Lee; George W. Bell; Celina G. Kleer; Ferenc Reinhardt; Ana C. D’Alessio; Richard A. Young; Robert A. Weinberg

The recent discovery that normal and neoplastic epithelial cells re-enter the stem cell state raised the intriguing possibility that the aggressiveness of carcinomas derives not from their existing content of cancer stem cells (CSCs) but from their proclivity to generate new CSCs from non-CSC populations. Here, we demonstrate that non-CSCs of human basal breast cancers are plastic cell populations that readily switch from a non-CSC to CSC state. The observed cell plasticity is dependent on ZEB1, a key regulator of the epithelial-mesenchymal transition. We find that plastic non-CSCs maintain the ZEB1 promoter in a bivalent chromatin configuration, enabling them to respond readily to microenvironmental signals, such as TGFβ. In response, the ZEB1 promoter converts from a bivalent to active chromatin configuration, ZEB1 transcription increases, and non-CSCs subsequently enter the CSC state. Our findings support a dynamic model in which interconversions between low and high tumorigenic states occur frequently, thereby increasing tumorigenic and malignant potential.


Cell | 2008

Systemic endocrine instigation of indolent tumor growth requires osteopontin.

Sandra S. McAllister; Ann M. Gifford; Ashley L. Greiner; Stephen Kelleher; Matthew P. Saelzler; Tan A. Ince; Ferenc Reinhardt; Lyndsay Harris; Elizabeth A. Repasky; Robert A. Weinberg

The effects of primary tumors on the host systemic environment and resulting contributions of the host to tumor growth are poorly understood. Here, we find that human breast carcinomas instigate the growth of otherwise-indolent tumor cells, micrometastases, and human tumor surgical specimens located at distant anatomical sites. This systemic instigation is accompanied by incorporation of bone-marrow cells (BMCs) into the stroma of the distant, once-indolent tumors. We find that BMCs of hosts bearing instigating tumors are functionally activated prior to their mobilization; hence, when coinjected with indolent cells, these activated BMCs mimic the systemic effects imparted by instigating tumors. Secretion of osteopontin by instigating tumors is necessary for BMC activation and the subsequent outgrowth of the distant otherwise-indolent tumors. These results reveal that outgrowth of indolent tumors can be governed on a systemic level by endocrine factors released by certain instigating tumors, and hold important experimental and therapeutic implications.


Cell | 2008

Growth Inhibitory and Tumor- Suppressive Functions of p53 Depend on its Repression of CD44 Expression

Samuel Godar; Tan A. Ince; George W. Bell; David M. Feldser; Joana Liu Donaher; Jonas Bergh; Anne Liu; Kevin Miu; Randolph S. Watnick; Ferenc Reinhardt; Sandra S. McAllister; Tyler Jacks; Robert A. Weinberg

The p53 tumor suppressor is a key mediator of cellular responses to various stresses. Here, we show that under conditions of basal physiologic and cell-culture stress, p53 inhibits expression of the CD44 cell-surface molecule via binding to a noncanonical p53-binding sequence in the CD44 promoter. This interaction enables an untransformed cell to respond to stress-induced, p53-dependent cytostatic and apoptotic signals that would otherwise be blocked by the actions of CD44. In the absence of p53 function, the resulting derepressed CD44 expression is essential for the growth and tumor-initiating ability of highly tumorigenic mammary epithelial cells. In both tumorigenic and nontumorigenic cells, CD44s expression is positively regulated by p63, a paralogue of p53. Our data indicate that CD44 is a key tumor-promoting agent in transformed tumor cells lacking p53 function. They also suggest that the derepression of CD44 resulting from inactivation of p53 can potentially aid the survival of immortalized, premalignant cells.


Circulation Research | 2009

Loss of Cardiac microRNA-Mediated Regulation Leads to Dilated Cardiomyopathy and Heart Failure

Prakash K. Rao; Yumiko Toyama; H. Rosaria Chiang; Sumeet Gupta; Michael Bauer; Rostislav Medvid; Ferenc Reinhardt; Ronglih Liao; Monty Krieger; Rudolf Jaenisch; Harvey F. Lodish; Robert Blelloch

Rationale: Heart failure is a deadly and devastating disease that places immense costs on an aging society. To develop therapies aimed at rescuing the failing heart, it is important to understand the molecular mechanisms underlying cardiomyocyte structure and function. Objective: microRNAs are important regulators of gene expression, and we sought to define the global contributions made by microRNAs toward maintaining cardiomyocyte integrity. Methods and Results: First, we performed deep sequencing analysis to catalog the miRNA population in the adult heart. Second, we genetically deleted, in cardiac myocytes, an essential component of the machinery that is required to generate miRNAs. Deep sequencing of miRNAs from the heart revealed the enrichment of a small number of microRNAs with one, miR-1, accounting for 40% of all microRNAs. Cardiomyocyte-specific deletion of dgcr8, a gene required for microRNA biogenesis, revealed a fully penetrant phenotype that begins with left ventricular malfunction progressing to a dilated cardiomyopathy and premature lethality. Conclusions: These observations reveal a critical role for microRNAs in maintaining cardiac function in mature cardiomyocytes and raise the possibility that only a handful of microRNAs may ultimately be responsible for the dramatic cardiac phenotype seen in the absence of dgcr8.


Cancer Discovery | 2012

Cancer-Stimulated Mesenchymal Stem Cells Create a Carcinoma Stem Cell Niche via Prostaglandin E2 Signaling

Hua-Jung Li; Ferenc Reinhardt; Harvey R. Herschman; Robert A. Weinberg

UNLABELLED Mesenchymal cells of the tumor-associated stroma are critical determinants of carcinoma cell behavior. We focus here on interactions of carcinoma cells with mesenchymal stem cells (MSC), which are recruited to the tumor stroma and, once present, are able to influence the phenotype of the carcinoma cells. We find that carcinoma cell-derived interleukin-1 (IL-1) induces prostaglandin E(2) (PGE(2)) secretion by MSCs. The resulting PGE(2) operates in an autocrine manner, cooperating with ongoing paracrine IL-1 signaling, to induce expression of a group of cytokines by the MSCs. The PGE(2) and cytokines then proceed to act in a paracrine fashion on the carcinoma cells to induce activation of β-catenin signaling and formation of cancer stem cells. These observations indicate that MSCs and derived cell types create a cancer stem cell niche to enable tumor progression via release of PGE(2) and cytokines. SIGNIFICANCE Although PGE2 has been implicated time and again in fostering tumorigenesis, its effects on carcinoma cells that contribute specifically to tumor formation are poorly understood. Here we show that tumor cells are able to elicit a strong induction of the COX-2/microsomal prostaglandin-E synthase-1 (mPGES-1)/PGE(2) axis in MSCs recruited to the tumor-associated stroma by releasing IL-1, which in turn elicits a mesenchymal/stem cell–like phenotype in the carcinoma cells.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The Spemann organizer gene, Goosecoid, promotes tumor metastasis.

Kimberly A. Hartwell; Beth Muir; Ferenc Reinhardt; Anne E. Carpenter; Dennis C. Sgroi; Robert A. Weinberg

The process of invasion and metastasis during tumor progression is often reminiscent of cell migration events occurring during embryonic development. We hypothesized that genes controlling cellular changes in the Spemann organizer at gastrulation might be reactivated in tumors. The Goosecoid homeobox transcription factor is a known executer of cell migration from the Spemann organizer. We found that indeed Goosecoid is overexpressed in a majority of human breast tumors. Ectopic expression of Goosecoid in human breast cells generated invasion-associated cellular changes, including an epithelial–mesenchymal transition. TGF-β signaling, known to promote metastasis, induced Goosecoid expression in human breast cells. Moreover, Goosecoid significantly enhanced the ability of breast cancer cells to form pulmonary metastases in mice. These results demonstrate that Goosecoid promotes tumor cell malignancy and suggest that other conserved organizer genes may function similarly in human cancer.

Collaboration


Dive into the Ferenc Reinhardt's collaboration.

Top Co-Authors

Avatar

Robert A. Weinberg

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Brian Bierie

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ethan S. Sokol

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Piyush B. Gupta

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Yuxiong Feng

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

George W. Bell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sandhya Sanduja

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Scott Valastyan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ann M. Gifford

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Christina Scheel

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge