Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where George W. Bell is active.

Publication


Featured researches published by George W. Bell.


Nature | 2007

Mesenchymal stem cells within tumour stroma promote breast cancer metastasis

Antoine E. Karnoub; Ajeeta B. Dash; Annie P. Vo; Andrew Sullivan; Mary W. Brooks; George W. Bell; Andrea L. Richardson; Kornelia Polyak; Ross Tubo; Robert A. Weinberg

Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.


Nature | 2006

Polycomb complexes repress developmental regulators in murine embryonic stem cells.

Laurie A. Boyer; Kathrin Plath; Julia Zeitlinger; Tobias Brambrink; Lea Ann Medeiros; Tong Ihn Lee; Stuart S. Levine; Marius Wernig; Adriana Tajonar; Mridula K. Ray; George W. Bell; Arie P. Otte; Miguel Vidal; David K. Gifford; Richard A. Young; Rudolf Jaenisch

The mechanisms by which embryonic stem (ES) cells self-renew while maintaining the ability to differentiate into virtually all adult cell types are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that help to maintain cellular identity during metazoan development by epigenetic modification of chromatin structure. PcG proteins have essential roles in early embryonic development and have been implicated in ES cell pluripotency, but few of their target genes are known in mammals. Here we show that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation. Using genome-wide location analysis in murine ES cells, we found that the Polycomb repressive complexes PRC1 and PRC2 co-occupied 512 genes, many of which encode transcription factors with important roles in development. All of the co-occupied genes contained modified nucleosomes (trimethylated Lys 27 on histone H3). Consistent with a causal role in gene silencing in ES cells, PcG target genes were de-repressed in cells deficient for the PRC2 component Eed, and were preferentially activated on induction of differentiation. Our results indicate that dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.


Cell | 2006

Control of Developmental Regulators by Polycomb in Human Embryonic Stem Cells

Tong Ihn Lee; Richard G. Jenner; Laurie A. Boyer; Matthew G. Guenther; Stuart S. Levine; Roshan M. Kumar; Brett Chevalier; Sarah E. Johnstone; Megan F. Cole; Kyoichi Isono; Haruhiko Koseki; Takuya Fuchikami; Kuniya Abe; Heather L. Murray; Jacob P. Zucker; Bingbing Yuan; George W. Bell; Elizabeth Herbolsheimer; Nancy M. Hannett; Kaiming Sun; Duncan T. Odom; Arie P. Otte; Thomas L. Volkert; David P. Bartel; Douglas A. Melton; David K. Gifford; Rudolf Jaenisch; Richard A. Young

Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.


Nature Genetics | 2008

An embryonic stem cell–like gene expression signature in poorly differentiated aggressive human tumors

Ittai Ben-Porath; Matthew W Thomson; Vincent J. Carey; Ruping Ge; George W. Bell; Aviv Regev; Robert A. Weinberg

Cancer cells possess traits reminiscent of those ascribed to normal stem cells. It is unclear, however, whether these phenotypic similarities reflect the activity of common molecular pathways. Here, we analyze the enrichment patterns of gene sets associated with embryonic stem (ES) cell identity in the expression profiles of various human tumor types. We find that histologically poorly differentiated tumors show preferential overexpression of genes normally enriched in ES cells, combined with preferential repression of Polycomb-regulated genes. Moreover, activation targets of Nanog, Oct4, Sox2 and c-Myc are more frequently overexpressed in poorly differentiated tumors than in well-differentiated tumors. In breast cancers, this ES-like signature is associated with high-grade estrogen receptor (ER)-negative tumors, often of the basal-like subtype, and with poor clinical outcome. The ES signature is also present in poorly differentiated glioblastomas and bladder carcinomas. We identify a subset of ES cell-associated transcription regulators that are highly expressed in poorly differentiated tumors. Our results reveal a previously unknown link between genes associated with ES cell identity and the histopathological traits of tumors and support the possibility that these genes contribute to stem cell–like phenotypes shown by many tumors.


Cell | 2009

Parkinson's Disease Patient-Derived Induced Pluripotent Stem Cells Free of Viral Reprogramming Factors

Frank Soldner; Dirk Hockemeyer; Caroline Beard; Qing Gao; George W. Bell; Elizabeth G. Cook; Gunnar Hargus; Alexandra Blak; Oliver Cooper; Maisam Mitalipova; Ole Isacson; Rudolf Jaenisch

Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinsons disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.


Cell | 2005

Genome-wide Map of Nucleosome Acetylation and Methylation in Yeast

Dmitry K. Pokholok; Christopher T. Harbison; Stuart S. Levine; Megan F. Cole; Nancy M. Hannett; Tong Ihn Lee; George W. Bell; Kimberly Walker; P. Alex Rolfe; Elizabeth Herbolsheimer; Julia Zeitlinger; Fran Lewitter; David K. Gifford; Richard A. Young

Eukaryotic genomes are packaged into nucleosomes whose position and chemical modification state can profoundly influence regulation of gene expression. We profiled nucleosome modifications across the yeast genome using chromatin immunoprecipitation coupled with DNA microarrays to produce high-resolution genome-wide maps of histone acetylation and methylation. These maps take into account changes in nucleosome occupancy at actively transcribed genes and, in doing so, revise previous assessments of the modifications associated with gene expression. Both acetylation and methylation of histones are associated with transcriptional activity, but the former occurs predominantly at the beginning of genes, whereas the latter can occur throughout transcribed regions. Most notably, specific methylation events are associated with the beginning, middle, and end of actively transcribed genes. These maps provide the foundation for further understanding the roles of chromatin in gene expression and genome maintenance.


eLife | 2015

Predicting effective microRNA target sites in mammalian mRNAs

Vikram Agarwal; George W. Bell; Jin-Wu Nam; David P. Bartel

MicroRNA targets are often recognized through pairing between the miRNA seed region and complementary sites within target mRNAs, but not all of these canonical sites are equally effective, and both computational and in vivo UV-crosslinking approaches suggest that many mRNAs are targeted through non-canonical interactions. Here, we show that recently reported non-canonical sites do not mediate repression despite binding the miRNA, which indicates that the vast majority of functional sites are canonical. Accordingly, we developed an improved quantitative model of canonical targeting, using a compendium of experimental datasets that we pre-processed to minimize confounding biases. This model, which considers site type and another 14 features to predict the most effectively targeted mRNAs, performed significantly better than existing models and was as informative as the best high-throughput in vivo crosslinking approaches. It drives the latest version of TargetScan (v7.0; targetscan.org), thereby providing a valuable resource for placing miRNAs into gene-regulatory networks. DOI: http://dx.doi.org/10.7554/eLife.05005.001


Current Biology | 2007

YAP1 Increases Organ Size and Expands Undifferentiated Progenitor Cells

Fernando D. Camargo; Sumita Gokhale; Jonathan B. Johnnidis; Dongdong Fu; George W. Bell; Rudolf Jaenisch; Thijn R. Brummelkamp

The mechanisms that regulate mammalian organ size are poorly understood. It is unclear whether the pathways that control organ size also impinge on stem/progenitor cells. A highly expressed gene in stem cells is YAP1, the ortholog of Drosophila Yorkie, a downstream component of the Hippo pathway. Mutations in components of this pathway produce tissue overgrowth phenotypes in the fly whereas mammalian orthologs, like salvador, merlin, LATS, and YAP1, have been implicated in tumorigenesis. We report here that YAP1 increases organ size and causes aberrant tissue expansion in mice. YAP1 activation reversibly increases liver size more than 4-fold. In the intestine, expression of endogenous YAP1 is restricted to the progenitor/stem cell compartment, and activation of YAP1 expands multipotent undifferentiated progenitor cells, which differentiate upon cessation of YAP1 expression. YAP1 stimulates Notch signaling, and administration of gamma-secretase inhibitors suppressed the intestinal dysplasia caused by YAP1. Human colorectal cancers expressing higher levels of YAP1 share molecular aspects with YAP1-induced dysplastic growth in the mouse. Our data show that the Hippo signaling pathway regulates organ size in mammals and can act on stem cell compartments, indicating a potential link between stem/progenitor cells, organ size, and cancer.


Nucleic Acids Research | 2005

Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis

Alexander Meissner; Andreas Gnirke; George W. Bell; Bernard Ramsahoye; Eric S. Lander; Rudolf Jaenisch

We describe a large-scale random approach termed reduced representation bisulfite sequencing (RRBS) for analyzing and comparing genomic methylation patterns. BglII restriction fragments were size-selected to 500–600 bp, equipped with adapters, treated with bisulfite, PCR amplified, cloned and sequenced. We constructed RRBS libraries from murine ES cells and from ES cells lacking DNA methyltransferases Dnmt3a and 3b and with knocked-down (kd) levels of Dnmt1 (Dnmt[1kd,3a−/−,3b−/−]). Sequencing of 960 RRBS clones from Dnmt[1kd,3a−/−,3b−/−] cells generated 343 kb of non-redundant bisulfite sequence covering 66212 cytosines in the genome. All but 38 cytosines had been converted to uracil indicating a conversion rate of >99.9%. Of the remaining cytosines 35 were found in CpG and 3 in CpT dinucleotides. Non-CpG methylation was >250-fold reduced compared with wild-type ES cells, consistent with a role for Dnmt3a and/or Dnmt3b in CpA and CpT methylation. Closer inspection revealed neither a consensus sequence around the methylated sites nor evidence for clustering of residual methylation in the genome. Our findings indicate random loss rather than specific maintenance of methylation in Dnmt[1kd,3a−/−,3b−/−] cells. Near-complete bisulfite conversion and largely unbiased representation of RRBS libraries suggest that random shotgun bisulfite sequencing can be scaled to a genome-wide approach.


Nature Biotechnology | 2010

Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model

Li Ma; Ferenc Reinhardt; Elizabeth Pan; Jürgen Soutschek; Balkrishen Bhat; Eric G. Marcusson; Julie Teruya-Feldstein; George W. Bell; Robert A. Weinberg

MicroRNAs (miRNAs) are increasingly implicated in the regulation of metastasis. Despite their potential as targets for anti-metastatic therapy, miRNAs have only been silenced in normal tissues of rodents and nonhuman primates. Therefore, the development of effective approaches for sequence-specific inhibition of miRNAs in tumors remains a scientific and clinical challenge. Here we show that systemic treatment of tumor-bearing mice with miR-10b antagomirs—a class of chemically modified anti-miRNA oligonucleotide—suppresses breast cancer metastasis. Both in vitro and in vivo, silencing of miR-10b with antagomirs significantly decreases miR-10b levels and increases the levels of a functionally important miR-10b target, Hoxd10. Administration of miR-10b antagomirs to mice bearing highly metastatic cells does not reduce primary mammary tumor growth but markedly suppresses formation of lung metastases in a sequence-specific manner. The miR-10b antagomir, which is well tolerated by normal animals, appears to be a promising candidate for the development of new anti-metastasis agents.

Collaboration


Dive into the George W. Bell's collaboration.

Top Co-Authors

Avatar

Robert A. Weinberg

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Rudolf Jaenisch

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ferenc Reinhardt

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Antoine E. Karnoub

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrea L. Richardson

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

David M. Sabatini

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bingbing Yuan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David K. Gifford

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

David P. Bartel

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge