Fernanda Caroline Soardi
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fernanda Caroline Soardi.
The Journal of Clinical Endocrinology and Metabolism | 2008
Fernanda Caroline Soardi; Michela Barbaro; Ivy F. Lau; Sofia Helena Valente de Lemos-Marini; Maria Tereza Matias Baptista; Gil Guerra-Júnior; Anna Wedell; Svetlana Lajic; M.P. de Mello
BACKGROUND Most patients with 21-hydroxylase deficiency carry CYP21A1P-derived mutations, but an increasing number of novel and rare mutations have been reported in disease-causing alleles. OBJECTIVE Functional effects of three novel (p.G56R, p.L107R, p.L142P) and one recurrent (p.R408C) CYP21A2 mutations were investigated. The degree of enzyme impairment caused by p.H62L alone or combined to p.P453S was also analyzed. DESIGN The study included 10 Brazilian and two Scandinavian patients. To determine the deleterious role of each mutant protein, in vitro assays were performed in transiently transfected COS-1 cells. For a correct genotype-phenotype correlation, the enzymatic activities were evaluated toward the two natural substrates, 17-hydroxyprogesterone and progesterone. RESULTS Low levels of residual activities obtained for p.G56R, p.L107R, p.L142P, and p.R408C mutants classified them as classical congenital adrenal hyperplasia mutations, whereas the p.H62L showed an activity within the range of nonclassical mutations. Apparent kinetic constants for p.H62L confirmed the nonclassical classification as the substrate binding capacity was within the same magnitude for mutant and normal enzymes. A synergistic effect was observed for the allele bearing the p.H62L+p.P453S combination because it caused a significant reduction in the enzymatic activity. CONCLUSIONS We describe the functional analysis of five rare missense mutations identified in Brazilian and Scandinavian patients. The p.G56R, p.L107R, and p.L142P are reported for the first time. Most probably these novel mutations are closer to null than the p.I172N, but for the p.G56R, that might not be the case, and the p.H62L is definitely a nonclassical mutation.
BMC Medical Genetics | 2014
Helena Campos Fabbri; Juliana Gabriel Ribeiro de Andrade; Fernanda Caroline Soardi; Flávia Leme de Calais; Reginaldo José Petroli; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior; Maricilda Palandi de Mello
BackgroundDisorders of sex development (DSD) is the term used for congenital conditions in which development of chromosomal, gonadal, or phenotypic sex is atypical. Nuclear receptor subfamily 5, group A, member 1 gene (NR5A1) encodes steroidogenic factor 1 (SF1), a transcription factor that is involved in gonadal development and regulates adrenal steroidogenesis. Mutations in the NR5A1 gene may lead to different 46,XX or 46,XY DSD phenotypes with or without adrenal failure. We report a Brazilian family with a novel NR5A1 mutation causing ambiguous genitalia in 46,XY affected individuals without Müllerian derivatives and apparently normal Leydig function after birth and at puberty, respectively. Their mother, who is also heterozygous for the mutation, presents evidence of primary ovarian insufficiency.Case presentationThree siblings with 46,XY DSD, ambiguous genitalia and normal testosterone production were included in the study. Molecular analyses for AR, SRD5A2 genes did not reveal any mutation. However, NR5A2 sequence analysis indicated that all three siblings were heterozygous for the p.Cys65Tyr mutation which was inherited from their mother. In silico analysis was carried out to elucidate the role of the amino acid change on the protein function. After the mutation was identified, all sibs and the mother had been reevaluated. Basal hormone concentrations were normal except that ACTH levels were slightly elevated. After 1 mcg ACTH stimulation test, only the older sib showed subnormal cortisol response.ConclusionThe p.Cys65Tyr mutation located within the second zinc finger of DNA binding domain was considered deleterious upon analysis with predictive algorithms. The identification of heterozygous individuals with this novel mutation may bring additional knowledge on structural modifications that may influence NR5A1 DNA-binding ability, and may also contribute to genotype-phenotype correlations in DSD. The slightly elevated ACTH basal levels in all three patients with 46,XY DSD and the subnormal cortisol response after 1 mcg ACTH stimulation in the older sib indicate that a long-term follow-up for adrenal function is important for these patients. Our data reinforce that NR5A1 analysis must also be performed in 46,XY DSD patients with normal testosterone levels without AR mutations.
Arquivos Brasileiros De Endocrinologia E Metabologia | 2010
Helena Campos Fabbri; Maricilda Palandi de Mello; Fernanda Caroline Soardi; Adriana Mangue Esquiaveto-Aun; Daniel Minutti de Oliveira; Fernanda Canova Denardi; Arnaldo Moura-Neto; Heraldo Mendes Garmes; Maria Tereza Matias Baptista; Patrícia Sabino de Matos; Sofia Helena Valente de Lemos-Marini; Lília D'Souza-Li; Gil Guerra-Júnior
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant hereditary cancer syndrome characterized mostly by parathyroid, enteropancreatic, and anterior pituitary tumors. We present a case of an 8-year-old boy referred because of hypoglycemic attacks. His diagnosis was pancreatic insulinoma. Paternal grandmother died due to repeated gastroduodenal ulcerations and a paternal aunt presented similar manifestations. At a first evaluation, the father presented only gastric ulceration but subsequently developed hyperparathyroidism and lung carcinoid tumor. During almost 15 years of follow-up, three brothers and the index case presented hyperparathyroidism and hyperprolactinemia. Molecular study showed a G to A substitution in intron 4, at nine nucleotides upstream of the splicing acceptor site, causing a splicing mutation. All affected members of the family have the same mutation. Paternal grandmother and aunt were not studied and the mother does not carry any mutation. MEN1 is a rare condition that requires permanent medical assistance. Early clinical and genetic identification of affected individuals is essential for their own surveillance and also for genetic counseling.
Arquivos Brasileiros De Endocrinologia E Metabologia | 2008
Juliana Gabriel Ribeiro de Andrade; Mara Sanches Guaragna; Fernanda Caroline Soardi; Gil Guerra-Júnior; Maricilda Palandi de Mello; Andréa Trevas Maciel-Guerra
AIM To present phenotypic variability of WT1-related disorders. METHODS Description of clinical and genetic features of five 46,XY patients with WT1 anomalies. RESULTS Patient 1: newborn with genital ambiguity; he developed Wilms tumor (WT) and chronic renal disease and died at the age of 10 months; the heterozygous 1186G>A mutation compatible with Denys-Drash syndrome was detected in this child. Patients 2 and 3: adolescents with chronic renal disease, primary amenorrhea and hypergonadotrophic hypogonadism; patient 2 had a gonadoblastoma. The heterozygous IVS9+4, C>T mutation, compatible with Frasier syndrome was detected. Patient 4: 9-year-old boy with aniridia, genital ambiguity, dysmorphisms and mental deficiency; a heterozygous 11p deletion, compatible with WAGR syndrome was detected. Patient 5: 2 months old, same diagnosis of patient 4; he developed WT at the age of 8 months. CONCLUSIONS Constitutional abnormalities of WT1 cause gonadal and renal anomalies and predisposition to neoplasia and must be investigated in patients with ambiguous genitalia, chronic renal disease and(or) Wilms tumors; primary amenorrhea with chronic renal disease; and aniridia, genital ambiguity and dysmorphisms.
BioMed Research International | 2014
Mariza Gerdulo Santos; Aline Zamboni Machado; Conceição N. Martins; Sorahia Domenice; Elaine Maria Frade Costa; Mirian Y. Nishi; Bruno Ferraz-de-Souza; Soraia Attie Calil Jorge; Carlos Augusto Pereira; Fernanda Caroline Soardi; Maricilda Palandi de Mello; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior; Berenice B. Mendonca
Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lys mutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.
Clinical Endocrinology | 2015
Michela Barbaro; Fernanda Caroline Soardi; Linus J. Östberg; Bengt Persson; Maricilda Palandi de Mello; Anna Wedell; Svetlana Lajic
A detailed genotype–phenotype evaluation is presented by studying the enzyme activities of five rare amino acid substitutions (Arg233Gly, Ala265Ser, Arg341Trp, Arg366Cys and Met473Ile) identified in the CYP21A2 gene in patients investigated for Congenital adrenal hyperplasia (CAH).
BMC Medical Genetics | 2010
Fernanda B. Coeli; Fernanda Caroline Soardi; Renan Darin Bernardi; Marcela de Araujo; Luciana Campos Paulino; Ivy F. Lau; Reginaldo José Petroli; Sofia Helena Valente de Lemos-Marini; Maria Tereza Matias Baptista; Gil Guerra-Júnior; Maricilda Palandi de-Mello
BackgroundCongenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P). In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency.MethodsWe used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study.ResultsAn allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4ATaq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different approaches revealed nine haplotypes for deleted 21-hydroxylase deficiency alleles.ConclusionsThis study demonstrated high allelic variability for 30-kb deletion in patients with 21-hydroxylase deficiency indicating that a founder effect might be improbable for most monomodular alleles carrying CYP21A1P/A2 chimeric genes in Brazil.
Arquivos Brasileiros De Endocrinologia E Metabologia | 2010
Letícia Gori Lusa; Sofia Helena Valente de Lemos-Marini; Fernanda Caroline Soardi; Lúcio F.C. Ferraz; Gil Guerra-Júnior; Maricilda Palandi de Mello
Type II 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3β-HSD2), encoded by the HSD3B2 gene, is a key enzyme involved in the biosynthesis of all the classes of steroid hormones. Deleterious mutations in the HSD3B2 gene cause the classical deficiency of 3β-HSD2, which is a rare autosomal recessive disease that leads to congenital adrenal hyperplasia (CAH). CAH is the most frequent cause of ambiguous genitalia and adrenal insufficiency in newborn infants with variable degrees of salt losing. Here we report the molecular and structural analysis of the HSD3B2 gene in a 46,XY child, who was born from consanguineous parents, and presented with ambiguous genitalia and salt losing. The patient carries a homozygous nucleotide c.665C>A change in exon 4 that putatively substitutes the proline at codon 222 for glutamine. Molecular homology modeling of normal and mutant 3β-HSD2 enzymes emphasizes codon 222 as an important residue for the folding pattern of the enzyme and validates a suitable model for analysis of new mutations.
Gene | 2013
Carolina Ayumi Braghini; Izabella Agostinho Pena Neshich; Goran Neshich; Fernanda Caroline Soardi; Maricilda Palandi de Mello; Vital Paulino Costa; José Paulo Cabral de Vasconcellos; Mônica Barbosa de Melo
Mutations in the myocilin gene (MYOC) account for most cases of autosomal dominant juvenile-onset open-angle glaucoma (JOAG), an earlier and more severe form of POAG. We accessed seven members of a Brazilian JOAG family by clinical and molecular investigation. Four out of seven family members were diagnosed with JOAG. All of these patients presented high intraocular pressure and two of them were bilaterally blind. The disease onset varied from 20 to 30years old. There was a nine-year-old family member who had not yet manifested the disease, although he was also a carrier of the mutation. Ophthalmologic examination included: evaluation of the visual field and optic disc, intraocular pressure measurement, and gonioscopy. The three exons and intron/exon junctions of the MYOC gene were screened for mutations through direct sequencing of PCR-amplified DNA fragments. Mutation screening revealed an in-frame mutation in the third exon of the MYOC gene: an insertion of six nucleotides between the cDNA positions 1187 and 1188 (c.1187_1188insCCCAGA, p.D395_E396insDP). This mutation presented an autosomal dominant pattern of inheritance, segregating with the disease in four family members for three generations, and it was absent in 60 normal controls. We also performed a computational structure modeling of olfactomedin-like domain of myocilin protein and conducted in silico analysis to predict the structural changes in the myocilin protein due to the presence of the mutation. These findings may be important for future diagnosis of other presymptomatic family members, as well as for the increase of the panel of MYOC mutations and their effects on phenotype.
Arquivos Brasileiros De Endocrinologia E Metabologia | 2008
Gil Guerra-Júnior; Angela Maria Spinola-Castro; Adriana Aparecida Siviero-Miachon; Roberto Gomes Nogueira; Sofia Helena Valente de Lemos-Marini; Lília D'Souza-Li; Priscila Cristina da Silva; Emerson Salvador de Souza França; Fernanda Caroline Soardi; Maricilda Palandi de Mello
Morning glory syndrome (MGS) is a congenital optic disc dysplasia often associated with craniofacial anomalies, especially basal encephalocele and hypopituitarism. Clinical signs are varied and often occult. The PAX6 gene is involved in ocular morphogenesis and is expressed in numerous ocular tissues during development especially in the developing central nervous system. The aim of the present study is to evaluate PAX6 in MGS associated with isolated growth hormone deficiency. Three pre-pubertal males (A, B and C) with MGS and short stature due to growth hormone deficiency, treated with recombinant human growth hormone with limited response, were reported. Two of them had basal encephalocele. Coding and non-coding sequences corresponding of PAX6 different transcripts were analyzed by direct sequencing. Nucleotide variations causing putative aminoacid change were not observed. Patient A presented the new IVS2+9G>A transition, whereas patients A and C were heterozygous for known single nucleotide polymorphisms (SNP) within the intron 4. In addition, two SNP heterozygoses were observed for patient C in both intron 9 and 13. Sequencing also revealed several nucleotide variations in patient B. Two heterozygoses for known polymorphisms were identified along with a novel C>A nucleotide change in intron 4. This patient also presented a low number on the TG repeat in intron 9 and a new IVS11+33A>T transversion. Gene regulation and transcription of PAX6 are complex processes; there are two major protein isoforms, PAX6(-5a) and PAX6(+5a), and nine transcripts described. Furthermore, extra transcription regulatory elements have been postulated within PAX6 introns. Considering that neither population distributions on PAX6 polymorphism nor their linkeages with diseases have been reported, a functional effect due to alterations described here cannot be discarded.