Reginaldo José Petroli
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reginaldo José Petroli.
BMC Medical Genetics | 2014
Helena Campos Fabbri; Juliana Gabriel Ribeiro de Andrade; Fernanda Caroline Soardi; Flávia Leme de Calais; Reginaldo José Petroli; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior; Maricilda Palandi de Mello
BackgroundDisorders of sex development (DSD) is the term used for congenital conditions in which development of chromosomal, gonadal, or phenotypic sex is atypical. Nuclear receptor subfamily 5, group A, member 1 gene (NR5A1) encodes steroidogenic factor 1 (SF1), a transcription factor that is involved in gonadal development and regulates adrenal steroidogenesis. Mutations in the NR5A1 gene may lead to different 46,XX or 46,XY DSD phenotypes with or without adrenal failure. We report a Brazilian family with a novel NR5A1 mutation causing ambiguous genitalia in 46,XY affected individuals without Müllerian derivatives and apparently normal Leydig function after birth and at puberty, respectively. Their mother, who is also heterozygous for the mutation, presents evidence of primary ovarian insufficiency.Case presentationThree siblings with 46,XY DSD, ambiguous genitalia and normal testosterone production were included in the study. Molecular analyses for AR, SRD5A2 genes did not reveal any mutation. However, NR5A2 sequence analysis indicated that all three siblings were heterozygous for the p.Cys65Tyr mutation which was inherited from their mother. In silico analysis was carried out to elucidate the role of the amino acid change on the protein function. After the mutation was identified, all sibs and the mother had been reevaluated. Basal hormone concentrations were normal except that ACTH levels were slightly elevated. After 1 mcg ACTH stimulation test, only the older sib showed subnormal cortisol response.ConclusionThe p.Cys65Tyr mutation located within the second zinc finger of DNA binding domain was considered deleterious upon analysis with predictive algorithms. The identification of heterozygous individuals with this novel mutation may bring additional knowledge on structural modifications that may influence NR5A1 DNA-binding ability, and may also contribute to genotype-phenotype correlations in DSD. The slightly elevated ACTH basal levels in all three patients with 46,XY DSD and the subnormal cortisol response after 1 mcg ACTH stimulation in the older sib indicate that a long-term follow-up for adrenal function is important for these patients. Our data reinforce that NR5A1 analysis must also be performed in 46,XY DSD patients with normal testosterone levels without AR mutations.
International Journal of Endocrinology | 2012
Nélio Neves Veiga-Junior; Reginaldo José Petroli; Flávia Leme de Calais; Maricilda Palandi de Mello; Carla Cristina Telles de Sousa Castro; Guilherme Guaragna-Filho; Letícia Esposito Sewaybricker; Antonia Paula Marques-de-Faria; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior
The aim of this study was to search for clinical and laboratorial data in 46,XY patients with ambiguous genitalia (AG) and normal testosterone (T) synthesis that could help to distinguish partial androgen insensitivity syndrome (PAIS) from 5α-reductase type 2 deficiency (5α-RD2) and from cases without molecular defects in the AR and SRD5A2 genes. Fifty-eight patients (51 families) were included. Age at first evaluation, weight and height at birth, consanguinity, familial recurrence, severity of AG, penile length, LH, FSH, T, dihydrotestosterone (DHT), Δ4-androstenedione (Δ4), and T/DHT and T/Δ4 ratios were evaluated. The AR and SRD5A2 genes were sequenced in all cases. There were 9 cases (7 families) of 5α-RD2, 10 cases (5 families) of PAIS, and 39 patients had normal molecular analysis of SRD5A2 and AR genes. Age at first evaluation, birth weight and height, and T/DHT ratio were lower in the undetermined group, while penile length was higher in this group. Consanguinity was more frequent and severity of AG was higher in 5α-RD2 patients. Familial recurrence was more frequent in PAIS patients. Birth weight and height, consanguinity, familial recurrence, severity of AG, penile length, and T/DHT ratio may help the investigation of 46,XY patients with AG and normal T synthesis.
BMC Medical Genetics | 2010
Fernanda B. Coeli; Fernanda Caroline Soardi; Renan Darin Bernardi; Marcela de Araujo; Luciana Campos Paulino; Ivy F. Lau; Reginaldo José Petroli; Sofia Helena Valente de Lemos-Marini; Maria Tereza Matias Baptista; Gil Guerra-Júnior; Maricilda Palandi de-Mello
BackgroundCongenital adrenal hyperplasia due to 21-hydroxylase deficiency is caused by deletions, large gene conversions or mutations in CYP21A2 gene. The human gene is located at 6p21.3 within a locus containing the genes for putative serine/threonine Kinase RP, complement C4, steroid 21-hydroxylase CYP21 tenascin TNX, normally, in a duplicated cluster known as RCCX module. The CYP21 extra copy is a pseudogene (CYP21A1P). In Brazil, 30-kb deletion forming monomodular alleles that carry chimeric CYP21A1P/A2 genes corresponds to ~9% of disease-causing alleles. Such alleles are considered to result from unequal crossovers within the bimodular C4/CYP21 locus. Depending on the localization of recombination breakpoint, different alleles can be generated conferring the locus high degree of allelic variability. The purpose of the study was to investigate the variability of deleted alleles in patients with 21-hydroxylase deficiency.MethodsWe used different techniques to investigate the variability of 30-kb deletion alleles in patients with 21-hydroxylase deficiency. Alleles were first selected after Southern blotting. The composition of CYP21A1P/A2 chimeric genes was investigated by ASO-PCR and MLPA analyses followed by sequencing to refine the location of recombination breakpoints. Twenty patients carrying at least one allele with C4/CYP21 30-kb deletion were included in the study.ResultsAn allele carrying a CYP21A1P/A2 chimeric gene was found unusually associated to a C4B/C4ATaq I 6.4-kb fragment, generally associated to C4B and CYP21A1P deletions. A novel haplotype bearing both p.P34L and p.H62L, novel and rare mutations, respectively, was identified in exon 1, however p.P30L, the most frequent pseudogene-derived mutation in this exon, was absent. Four unrelated patients showed this haplotype. Absence of p.P34L in CYP21A1P of normal controls indicated that it is not derived from pseudogene. In addition, the combination of different approaches revealed nine haplotypes for deleted 21-hydroxylase deficiency alleles.ConclusionsThis study demonstrated high allelic variability for 30-kb deletion in patients with 21-hydroxylase deficiency indicating that a founder effect might be improbable for most monomodular alleles carrying CYP21A1P/A2 chimeric genes in Brazil.
Arquivos Brasileiros De Endocrinologia E Metabologia | 2012
Guilherme Guaragna-Filho; Carla Cristina Telles de Sousa Castro; Rodrigo Ribeiro De Carvalho; Fernanda Borchers Coeli; Lúcio F.C. Ferraz; Reginaldo José Petroli; Maricilda Palandi de Mello; Letícia Esposito Sewaybricker; Sofia Helena Valente de Lemos-Marini; Lília D'Souza-Li; Márcio Lopes Miranda; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior
Deficiency of the enzyme P450 oxidoreductase is a rare form of congenital adrenal hyperplasia with characteristics of combined and partial impairments in steroidogenic enzyme activities, as P450 oxidoreductase transfers electrons to CYP21A2, CYP17A1, and CYP19A1. It results in disorders of sex development and skeletal malformations similar to Antley-Bixley syndrome. We report the case of a 9-year-old girl who was born with virilized genitalia (Prader stage V), absence of palpable gonads, 46,XX karyotype, and hypergonadotropic hypogonadism. During the first year of life, ovarian cyst, partial adrenal insufficiency, and osteoarticular changes, such as mild craniosynostosis, carpal and tarsal synostosis, and limited forearm pronosupination were observed. Her mother presented severe virilization during pregnancy. The molecular analysis of P450 oxidoreductase gene revealed compound heterozygosis for the nonsense p.Arg223*, and the novel missense p.Met408Lys, inherited from the father and the mother, respectively.
BMC Research Notes | 2011
Reginaldo José Petroli; Andréa Trevas Maciel-Guerra; Fernanda Caroline Soardi; Flávia Leme de Calais; Gil Guerra-Júnior; Maricilda Palandi de Mello
BackgroundThe androgen insensitivity syndrome may cause developmental failure of normal male external genitalia in individuals with 46,XY karyotype. It results from the diminished or absent biological action of androgens, which is mediated by the androgen receptor in both embryo and secondary sex development. Mutations in the androgen receptor gene, located on the X chromosome, are responsible for the disease. Almost 70% of 46,XY affected individuals inherited mutations from their carrier mothers.FindingsMolecular abnormalities in the androgen receptor gene in individuals of a Brazilian family with clinical features of severe forms of partial androgen insensitivity syndrome were evaluated. Seven members (five 46,XY females and two healthy mothers) of the family were included in the investigation. The coding exons and exon-intron junctions of androgen receptor gene were sequenced. Five 46,XY members of the family have been found to be hemizygous for the c.3015C>T nucleotide change in exon 7 of the androgen receptor gene, whereas the two 46,XX mothers were heterozygote carriers. This nucleotide substitution leads to the p.L830F mutation in the androgen receptor.ConclusionsThe novel p.L830F mutation is responsible for grades 5 and 6 of partial androgen insensitivity syndrome in two generations of a Brazilian family.
Sexual Development | 2014
Reginaldo José Petroli; Olaf Hiort; Dagmar Struve; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior; Maricilda Palandi de Mello; Ralf Werner
The androgen insensitivity syndrome (AIS) is described as a dysfunction of the androgen receptor (AR) in 46,XY individuals, which can be associated with mutations in the AR gene or can be due to unknown mechanisms. Different mutations in AIS generally cause variable phenotypes that range from a complete hormone resistance to a mild form usually associated with male infertility. The purpose of this study was to search for mutations in the AR gene in a fertile man with gynecomastia and to evaluate the influence of the mutation on the AR transactivation ability. Sequencing of the AR gene revealed the p.Pro695Ser mutation. It is located within the AR ligand-binding domain. Bioinformatics analysis indicated a deleterious role, which was verified after testing transactivation activity and N-/C-terminal (N/C) interaction by in vitro expression of a reporter gene and 2-hybrid assays. p.Pro695Ser showed low levels of both transactivation activity and N/C interaction at low dihydrotestosterone (DHT) conditions. As the ligand concentration increased, both transactivation activity and N/C interaction also increased and reached normal levels. Therefore, this study provides functional insights for the p.Pro695Ser mutation described here for the first time in a patient with mild AIS. The expression profile of p.Pro695Ser not only correlates to the patients phenotype, but also suggests that a high-dose DHT therapy may overcome the functional deficit of the mutant AR.
Hormone and Metabolic Research | 2015
Adriana Mangue Esquiaveto-Aun; Denise Engelbrecht Zantut-Wittmann; Reginaldo José Petroli; B.S. L. Nakano; Gil Guerra-Júnior; S.H.V. de Lemos-Marini; M.P. de Mello
The syndrome of resistance to thyroid hormone (RTH β) is an inherited disorder characterized by variable tissue hyposensitivity to 3,5,30-L-triiodothyronine (T(3)), with persistent elevation of free-circulating T(3) (FT(3)) and free thyroxine (FT(4)) levels in association with nonsuppressed serum thyrotropin (TSH). Clinical presentation is variable and the molecular analysis of THRB gene provides a short cut diagnosis. Here, we describe 2 cases in which RTH β was suspected on the basis of laboratory findings. The diagnosis was confirmed by direct THRB sequencing that revealed 2 novel mutations: the heterozygous p.Ala317Ser in subject 1 and the heterozygous p.Arg438Pro in subject 2. Both mutations were shown to be deleterious by SIFT, PolyPhen, and Align GV-GD predictive methods.
Sexual Development | 2017
Reginaldo José Petroli; Olaf Hiort; Dagmar Struve; Julia K. Gesing; Fernanda Caroline Soardi; Angela Maria Spinola-Castro; Karla F.S. Melo; Ivo J. P. Arnhold; Andréa Trevas Maciel-Guerra; Gil Guerra-Júnior; Ralf Werner; Maricilda Palandi de Mello
Androgens are responsible for the development and maintenance of male sex characteristics. Dysfunctions in androgen action due to mutations in the androgen receptor gene (AR) can lead to androgen insensitivity syndrome (AIS) that can be classified as mild (MAIS), partial (PAIS), or complete (CAIS). We have analyzed functional effects of p.Ser760Thr, p.Leu831Phe, p.Ile899Phe, p.Leu769Val, and p.Pro905Arg mutations and the combination p.Gln799Glu + p.Cys807Phe that were identified in patients with PAIS or CAIS. The p.Leu769Val and p.Pro905Arg mutations showed complete disruption of AR action under physiological hormone concentrations; however, they differed in high DHT concentrations especially in the N/C terminal interaction assay. Mutations p.Ser760Thr, p.Leu831Phe, p.Ile899Phe presented transactivation activities higher than 20% of the wild type in physiological hormone concentrations and increased with higher DHT concentrations. However, each one showed a different profile in the N/C interaction assay. When p.Gln799Glu and p.Cys807Phe were analyzed in combination, transactivation activities <10% in physiologic hormone conditions indicated an association with a CAIS phenotype. We conclude that the functional analysis elucidated the role of mutant ARs, giving clues for the molecular mechanisms associated with different clinical AIS manifestations. Differences in hormone-dependent profiles may provide a basis for the response to treatment in each particular case.
Scopus | 2015
Adriana Mangue Esquiaveto-Aun; Denise Engelbrecht Zantut-Wittmann; Reginaldo José Petroli; Nakano B.S.L.; Gil Guerra-Júnior; de Lemos-Marini S.H.V.; M.P. de Mello
The syndrome of resistance to thyroid hormone (RTH β) is an inherited disorder characterized by variable tissue hyposensitivity to 3,5,30-L-triiodothyronine (T(3)), with persistent elevation of free-circulating T(3) (FT(3)) and free thyroxine (FT(4)) levels in association with nonsuppressed serum thyrotropin (TSH). Clinical presentation is variable and the molecular analysis of THRB gene provides a short cut diagnosis. Here, we describe 2 cases in which RTH β was suspected on the basis of laboratory findings. The diagnosis was confirmed by direct THRB sequencing that revealed 2 novel mutations: the heterozygous p.Ala317Ser in subject 1 and the heterozygous p.Arg438Pro in subject 2. Both mutations were shown to be deleterious by SIFT, PolyPhen, and Align GV-GD predictive methods.
PubMed | 2015
Adriana Mangue Esquiaveto-Aun; Denise Engelbrecht Zantut-Wittmann; Reginaldo José Petroli; B.S. L. Nakano; Gil Guerra-Júnior; S.H.V. de Lemos-Marini; M.P. de Mello
The syndrome of resistance to thyroid hormone (RTH β) is an inherited disorder characterized by variable tissue hyposensitivity to 3,5,30-L-triiodothyronine (T(3)), with persistent elevation of free-circulating T(3) (FT(3)) and free thyroxine (FT(4)) levels in association with nonsuppressed serum thyrotropin (TSH). Clinical presentation is variable and the molecular analysis of THRB gene provides a short cut diagnosis. Here, we describe 2 cases in which RTH β was suspected on the basis of laboratory findings. The diagnosis was confirmed by direct THRB sequencing that revealed 2 novel mutations: the heterozygous p.Ala317Ser in subject 1 and the heterozygous p.Arg438Pro in subject 2. Both mutations were shown to be deleterious by SIFT, PolyPhen, and Align GV-GD predictive methods.